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INTRODUCTION

The scientific goal of the experiment is to test the equality of gravitational and inertial
mass (i.€., to test the Principle of Equivalence) by measuring the independence of the rate
of fall of bodies from the composition of the falling body. The measurement is
accomplished by measuring the relative displacement (or equivalently acceleration) of
two falling bodies of different materials which are the proof masses of a differential
accelerometer. The goal of the experiment is to measure the Eotvos ratio dg/g
(differential acceleration/common acceleration) with an accuracy goal of several parts in
10", The estimated accuracy is about two orders of magnitude better than the present
state of the art.

The main goal of the study to be carried out under this grant is part of the flight definition
of the experiment and laboratory testing of key components. The project involves an
international cooperation in which the responsibility of the US side is the flight definition
of the experimental facility while the responsibility of the non-US partners is the flight
definition and laboratory prototyping of the differential acceleration detector.

In summary, the experiment to be designed is for taking differential acceleration
measurements with a high-sensitivity detector (the sensor) during free fall conditions
lasting up to 30 s in a disturbance-free acceleration environment. The experiment
strategy consists in letting the sensor free fall inside a few meters long (in the vertical
direction) evacuated capsule that is falling simultaneously in the rarefied atmosphere
after release from a helium balloon flying at a stratospheric altitude.

DESCRIPTION OF EXPERIMENT CONCEPT
Need for Picogravity Environment

The accuracy of the Weak Equivalence Principle (WEP) tests with laboratory proof
masses on the ground is limited by the Earth's seismic noise and the weakness of suitable
signal sources. Previous experiments include the famous torsion balance experiments of
Eotvos (1890-1922)" 1 as well as the classical tests of the Equivalence Principle by Roll-
Krotkov-Dicke (1964) utilizing a torsion balance which had an accuracy of 3 parts in
10" and the LI. Shapiro et al. (1976)" and Williams et al. (1976)" lunar laser ranging
experiment with an accuracy of 3 parts in 10">. The present state of the art is at a few
parts in 10" both for lunar laser ranging tests (Williams et al., 1996)" and for torsion
balance tests (Adelberger et al., 1999)"".

By conducting the experiment in free fall, the signal strength increases by about three
orders of magnitude because the full strength of the Earth’s gravity is sensed in free fall.
Seismic noise is also absent in free fall. Seismic noise is replaced in orbit by the noise
sources of the space environment which require drag free stages or drag compensation in
order to achicve the promised improvements in the test accuracy. An orbital free fall,
with a "drag-free" satellite, is one approach that has been under development for many
years. A small number of orbital tests of the WEP has becn proposed with estimated




accuracies of 107", 10" ™ and 10™*. An alterative to the free fall in space is the
vertical free fall inside a drag-shielding capsule released from a balloon at a stratospheric
altitude as proposed in this experiment®.

An orbital free-fall has advantages and disadvantages with respect to vertical free fall. On
the one hand, orbital free-fall tests can achieve an even higher accuracy than vertical free-
fall tests thanks to the longer integration time and lower resonance frequency of the
detector. On the other hand, vertical free fall tests have some key advantages over orbital
tests. First of all, in a vertical free fall (from a balloon) the experiment can be repeated at
relatively short intervals of time (a few weeks) and at a more affordable cost. The ability
to repeat the experiment is important for the success because these high-accuracy
differential detectors can not be tested on the ground at the accuracy that they can achieve
in free fall conditions. Therefore, modifications and improvements have to be expected
before the detector/experiment performs at the estimated free-fall accuracy.

Both orbital and vertical free fall are Galilean experiments in which the differential
displacement or rate of fall or acceleration is measured between two bodies of different
materials falling in a gravitational ficld. However, classic Galilean experiments, in which
the relative displacement of two bodies falling side by side is measured (with drops
ranging from Im to 140m) have yielded an accuracy™ in testing the WEP of order 107°.
The limitation mostly stems from relative errors in initial conditions at release which
propagate over time due to gravity gradients. This problem can be overcome in orbital
and long vertical free falls (i.c., from stratospheric heights) thanks to two provisions: (1)
the initial relative motion of the two sensing masses inside the detector is abated during a
damping phase preceding the measurement phase and (2) the detector is rotated with
respect to the gravity field in order to modulate the signal (at a frequency f) and move
the frequency of key gravity gradient components to 2f;.

The test of the Equivalence Principle requires a differential measurement of acceleration.
This fact has a positive consequence in terms of the rejection of accelerations that affect
the two proof masses equally (common-mode type) and their effects on the differential
acceleration. Typical values of the common-mode rejection factor of differential
accelerometers are of order 10”. Consequently, for an experiment that aims at measuring
differential acceleration of order 10" g, the common-mode acceleration perturbations
external to the detector must be of order 107" g or less.

Drop Facility

The following is a preliminary description of the drop facility the design of which will
cvolve as a result of the analyses carried out during the flight definition phase. The free
fall facility (see Fig. 1) consists of: (1) the gondola that stays attached to the balloon; (2)
a leveling mechanism that keeps the capsule vertical before release; (3) the capsule,
which houses a large vacuum chamber/cryostat; (4) the instrument package which free
falls inside the cryostat and contains a small, high-vacuum chamber which in turn houses
the detector; and (5) the parachute system to decelerate the capsule at the end of the free
fall run.



The capsule is kept vertically leveled and stabilized in azimuth by the gondola before
release. Upon reaching an altitude higher than 40 km, the capsule is released from the
gondola and immediately afterwards (< 1 s) the instrument package is released from the
top of the capsule. The analysis indicates (see later on) that with a 1-3 m long vertical
space available inside the capsule, the instrument package will span that space in 25-30 s
while the capsule, that is slightly decelerated by the rarefied atmosphere, falls by a few
km over the same time. The capsule shields the instrument package from external
perturbations and allows it to free fall under acceleration conditions which are close to
ideal. The differential acceleration between the two falling test masses is measured
during the free fall time. At the end of the free-fall run the capsule is decelerated by a
parachute system for recovery in water or, alternatively, over land.

Small Detector

Cryostat release
mechanism

Spin axis

.. . Instrument
Sensitive axis package with

detector

Large

vacuum

chamber

Figure 1 Pre-definition-study configuration of capsule in free fall after detector release
Detector Concept

The following is a preliminary description of a differential acceleration detector concept,
the design of which (carried out in cooperation with our non-US partners) will evolve as
a result of the analyses conducted during the flight definition phase.

The detector that we plan to use for the experiment is a differential accelerometer
that will be developed at the Institute of Space Physics (IFSI) in Rome (ltaly), under the
sponsorship of the Italian Space Agency in the framework of the participation in this
project of non-US investigators (with V. Iafolla, PI). This detector technology™ has
been pioneered by V. Iafolla and the late F. Fuligni and applied to the construction of a
number of high-sensitivity, low-frequency accelerometers over several years. In the
following we give a brief description of the detector conceptual design at this stage of the
project.




The differential-acceleration detector (see Fig. 2) measures the relative displacement.
along the sensitive axis. between two sensing masses of different materials. The centers
of mass of the sensing masses are made to coincide within the attainable values in order
to minimize the effect of gravity gradients, rotational motions and linear accelerations
upon the differential output signal.

spin axis

Figure 2 Longitudinal section of conceptual instrument and sensing masses.

The two sensing masses are constrained by torsion springs to rotate independently
about the twist axis (which is parallel to the spin axis of the instrument) and their
resonant frequencies are electrostatically controlled for frequency matching. The
displacements generated by the rotations are sensed by the capacitive pick-ups of the
instrument as explained later on. Sensing mass 1 (in dark color) is a hollow cylinder
mostly made of a given material while sensing mass 2 (in light color) is a dumbbell-
shaped cylinder made of a different material. Each sensing mass constitutes the moving
part of a capacitor with symmetric fixed plates on either side of the sensing mass (see
Fig. 3). Capacitor 1 is formed by sensing mass 1 and the fixed plates marked A and B
while capacitor 2 is formed by sensing mass 2 and the fixed plates marked C and D. The
fixed plates A and C are used for signal pick-up and the fixed plates B and D for feed-
back control. The displacement of sensing mass 1, for example. is detected by the series
capacitances As (one fixed plate on each side of the sensing mass). These plates form one
branch of a capacitive bridge in which two additional reference capacitors form the other
branch. The bridge is pumped by a quartz oscillator at a stable frequency of 10-20 kHz.
reducing the relevant noise temperature of the preamplifier. The difference between the
output signals from capacitors 1 and 2 is amplified by a low-noise preamplifier, sent to a
lock-in amplifier for phase-detection. and then to a low-pass filter.

The cross sections of the cllipsoids of inertia about the spin axis of the instrument are
circular so as to minimize, within the construction tolerance. the mass-moment torques™.
In the detector shown in Figs. 2 and 3. the inner cylindrical mass is made mostly of a
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high-density material (e.g., Platinum-Iridium) while the outer dumbbell-mass is made of
a low-density material (e.g., Aluminum).

—

Figure 3 Interior of conceptual differential acceleration detector.

In order to achieve an experimental accuracy of several parts in 10" in 25-30 s
integration time, the detector must have an intrinsic noise (expressed in terms of
acceleration) of about 10 g/Hz'"?. Earlier analyses indicate that this level of noise is
attainable with an instrument refrigerated to a temperature close to that of liquid Helium
and with state-of-the-art low-noise preamplifiers.

Experiment Sequence and Communication Links

Figure 4 shows the preliminary timetable of the experiment sequence. The
experiment starts with the loading of the sensor into the vacuum chamber/cryostat about
2 weeks before the planned launch. This operation is then followed by the pumping
down of the chamber and the refrigeration of the sensor. After connecting the capsule to
the gondola and the balloon, the balloon is launched. The estimated time to reach altitude
is of order 3 hours. Upon reaching altitude, the attitude of the capsule is stabilized by the
leveling mechanism attached to the gondola, the sensor is spun up, and the dynamics of
the system is analyzed. When the dynamics is within the acceptable bounds, the capsule
is released from the gondola and the sensor is released from the top of the
chamber/cryostat immediately afterwards. The science data is taken during the free-fall
phase in which the sensor spans the length of the chamber. Shortly after the sensor has
reached the bottom of the capsule, the blut (first stage of the deceleration system) is
released and, when the speed has decreased below the required value, the parachute is
deployed. The chamber is vented before the capsule hits the surface/water and the
locator beacon is turned on.
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Figure 4 Preliminary timeline of experiment

Figure 5 is a schematic of the communication system between the ground, the
gondola and the capsule through radio links and the communication between the sensor
(during free fall) and the capsule through an infra-red link.
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Figure 5 Schematic of communication links.
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ANALYSIS OF FREE FALL PHASE

The free fall time of the instrument package inside the capsule can be computed after
considering that the capsule is slowly decelerated by the air drag while the instrument
package (after release) moves inside the vacuum chamber at low relative speed and
consequently it is unaffected by air drag (it is indeed in free-fall conditions).

Free fall time

The free fall time and vertical size of the vacuum chamber/cryostat can be computed
from the equations of motion of the instrument package in free fall and the capsule in
decelerated fall. The equations of motion are as follows:

&K=&

1
S§=g—2m

(1)

C,Spx

where z is the vertical distance from the time of release (the subscript 1 stands for
instrument package and 2 for capsule), S is the frontal cross section of the capsule, Cp, the
air drag coefficient of the capsule and p = f(h) is the air density with h the altitude above
the Earth’s surface. Equations (1) can be solved analytically only if Cy, is assumed
constant and the atmospheric density exponential. We will not spend time on the analytic
solution because it is valid only for relatively-short drops.
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Figure 6 Atmospheric density in the stratosphere per US Standard Atmosphere 1976
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After adopting a density profile from the US Standard 1976 Atmospheric Model (as
shown in Fig. 6) the exponential fit of the density for the altitudes of interest is:

p=poe " @)

Where H is the scale height, p, is the reference density which is taken at the Earth’s
surface and h the altitude above the Earth’s surface. The relative distance can be
obtained as the double integral of the acceleration difference between the capsule and the
instrument package 8= % — & Wwhich is equal to the deceleration of the capsule due to
aerodynamic drag:

Sxc= _;_%e(z—hv VH 22 o

where B = m/(C,S) is the frontal ballistic coefficient of the capsule, h;, is the drop
altitude, z = (1/2)gt* the distance traveled by the capsule and g the Earth’s gravitational
acceleration. The drop velocity of the capsule is assumed equal to the free fall velocity gz
only for the purpose of computing the air drag decceleration (which is a valid
approximation at high altitudes).

The air drag coefficient C, is fairly constant in the non-compressible regime but then
it grows substantially with the Mach number for speeds approaching the transonic regime
as shown in Fig. 7 for an aecrodynamically-shaped cylinder with fineness ratio D/L = 6 =
0.25. The Mach number M is the ratio between the actual speed of the capsule and the
speed of sound at the local altitude:

<

M = 4)

YRT

where R = 287 J/(kg-K) is the gas constant of air, T the local air temperature and y = 1 4.
The Mach number vs. the drop time is shown in Fig. 8 together with the drop distance vs.
time.

As a result of the functional dependence Cp, = f(Mach), we can separate the ballistic
coefficient into two components as follows:

B = B+ AP S)

where 3, = m/(Cp,A) is the low-speed ballistic coefficient (i.e., its minimum value) and

AP is the fractional variation of the ballistic coefficient due to the increase of the Mach
number.
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Figure 7 C;, vs. Mach number for an aerodynamically-shaped cylinder with & = 0.25 (see
text)
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Figure 8 Mach number and capsule drop distance vs. time

After taking into account the functional dependence C,, = f(Mach) and integrating
eqn. (3) twice for different values of the ballistic coefficient, we obtain the numerical
results shown in Fig. 9, for a fineness ratio & = 0.25, a drop altitude of 40 km and a (low-
speed) ballistic coefficient B, ranging from 2000 kg/m’ to 10000 kg/m”.
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The numerical results clearly indicate that it is possible to attain a free fall time between
25 s and 30 s with very reasonable lengths of the chamber and capsule. Appropriate
values of the (low-speed) ballistic coefficient in the range of greater interest of 6000-
10000 kg/m’ can be readily obtained with capsule masses <1500 kg and external
diameters smaller than 1.8 m. Designs options will be investigated later on in this report.

Relative distance (m)

0 5 10 15 20 25 30 35
Time (s)

Figure 9 Relative distance for various initial ballistic coefficients
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Air drag deceleration (g)
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Figure 10 Capsule deceleration due to air drag (f, = 6000 kg/m’)
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Figure 11 Limit velocity and actual velocity of capsule vs. altitude (8, = 6000 kg/m?)

For completeness the deceleration of the capsule caused by air drag is shown in Fig. 10
for B, = 6000 kg/m’. Figure 11 depicts the limit velocity and the capsule actual velocity
vs. altitude for the same case. The limit velocity is the velocity at which the gravitational
and air drag force are equal and, consequently, for a limit velocity much greater than the
actual velocity the air-drag deceleration is very small.

Effect of Wind Shear

The horizontal velocities of the capsule and the instrument package (attached to the
capsule) are the same at the start of the fall. The inertial horizontal velocity is determined
by the rotational velocity of the Earth at the latitude of capsule release and by the local
wind. The former (which is much bigger than the latter) simply makes the falling bodies
follow a parabolic trajectory rather than a fall along the local vertical. The maximum
lateral displacement is of order a couple of hundred meters over a fall distance of 4.4 km
which is consistent with a 30-s fall time. It is also worth pointing out that this lateral
displacement does not generate any acceleration on board because the displacement is
due to an initial non-null velocity and not to external acceleration acting on the falling
body.

The diameter of the capsule is important for tolerating vertical gradients (wind shear)
of the lateral wind without the need for a propulsion system to compensate for their
cffect. The balloon will move at the speed of the local wind once the floating altitude has
been reached, i.e., the capsule will be at zero relative speed with respect to the local wind.
If the wind vertical profile were constant, the capsule and the instrument package would
move laterally during the fall with the same initial lateral velocity and hence maintain the
same lateral distance with respect to onc another. But, if the wind vertical profile
changes, the capsule will experience a lateral force that will change its lateral speed while
the instrument package will not experience such force.
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The lateral displacement y of the capsule due to the wind shear V, = dV/dz over the
vertical drop distance (Z = 1/2gt’) is as follows:

A

y ==V (8)
308 ¢

where p is the atmospheric density, 3, = m/(Cy,S)) is the lateral ballistic coefficient of the
capsule, S, the lateral area of the capsule, and g the Earth’s surface gravity. Equation (8)
is simplified because the atmospheric density has been assumed constant over the drop.
The equation, however, provides a good estimate of the lateral displacement of the
capsule due to wind shear after adopting the average value # of the density along the
drop. After calling S the frontal area of the capsule and assuming that Cy,, = 10C,, S, =
3S/(nd), which are valid in approximation for a cylinder with aecrodynamically-shaped
nose and tail, we can relate the lateral ballistic coefficient to the frontal (low-speed)
ballistic coefficient as follows:
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Figure 12 Lateral displacement due to wind shear vs. 3,
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For o = 6x10° kg/m’ (i.c., average atmospheric density between 40 km and 35 km of
altitude), V, = 0.005 s”', and § = 0.25, we obtain the results shown in Fig. 12. The
accuracy of eqns. (8) and (10) was also checked through numerical integration of the
equation of lateral motion after assuming an exponential air density profile. The
displacement error is less than 5% by using the average density value. The value adopted
for the wind shear of 0.005 s is equivalent to a vertical gradient of 10 knots per km.
This value is twice as high as the maximum wind shear reported" for the Air Force
balloon base at Holloman, New Mexico.

The lateral displacements due to wind shear are relatively small for rather
conservative values of wind shear, free-fall times and ballistic coefficients greater than
6000 kg/m’, which are easy to obtain. These results show that there is no need for a
thruster system to compensate for the effect of the lateral wind acting on the capsule.
The geometry and mass of the capsule can be chosen in a way to accommodate the
presence of wind shear. Furthermore, if the balloon is launched during the periodically-
occurring wind reversal times (in April-May and September-October) the vertical wind
gradient is much smaller than the value adopted for the computations shown here.

The capsule displacement due to wind shear has to be taken into account when computing
the internal diameter of the capsule (where the instrument package falls). However, it
will be shown later on that other factors (e.g., gravity gradients) are more important in
determining the capsule internal diameter.
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SCIENCE CONCEPT ANALYSIS

The error analysis has been extended with respect to what is reported in Ref*" to
include a thorough analysis of the gravity gradient generated by the distributed mass of
the capsule, the concentrated masses on board the capsule, and the Earth’s mass for
generic positions and orientations of the sensor. The acceleration noise inside the capsule
has also been revisited after considering that in the new reference design (see later on) the
chamber is fully cryogenic. The intrinsic noise components of the detector (Brownian
and preamplifier noise) were also recomputed based on new information from the IFSI
laboratory. As a results of these new analyses, requirements have been derived for: (a)
the mass distribution of the capsule; (b) the tolerable mass and location of equipment on
board the capsule; (¢) the orientation of the sensor during free fall and the centering of the
two sensing masses; and (d) the characteristics parameters of the detector that affects its
intrinsic noise level.

Acceleration Noise inside Capsule

The experimental package moves at very low speed inside the capsule. Consequently,
the residual gas inside the vacuum chamber produces a minute force on the free-falling
package with a frequency content centered at f = 1/t; s where t; is the free-fall time. This
gas thus affects the acceleration of the instrument package in a frequency range well
removed from the signal frequency. The acceleration, as a function of pressure inside the
chamber, is as follows:

_GAVP

11
°  2m RT (1

a

where A and m are the frontal area and mass of the instrument package, respectively, V
is the maximum velocity of the instrument package with respect to the falling capsule, R
is the gas constant, T the temperature of the residual gas, and p the pressure inside the
chamber. Because of the new reference design (see later on) with a fully cryogenic
vacuum chamber, the residual gas in the chamber is refrigerated Helium. After assuming
C,, = 2.2 (for a free-molecular regime), A = 0.1 m’, m = 30 kg, V = 0.5 m/s (obtained by
integrating eqn. 3 once up to 30 s), R = 2078 J/(kg-K), T = 5 K, and p = 10 mBar, eqn.
(11) yields a, = 107"* g. The spectrum of this acceleration is centered at a frequency
0.033-0.05 Hz for free-fall times t; in the range 20-30 s. Consequently, the magnitude of
the acceleration at the signal frequency f;, which is in the range 0.2-0.5 Hz, is well
smaller than 107" g. This acceleration is a common-mode acceleration which is further
reduced by the common-mode rejection factor (CMRF) of order 10™.

Furthermore, the vacuum strongly attenuates the propagation of perturbations from the
walls of the capsule to the free-falling instrument package. The estimate of the
acceleration at the falling instrument package produced by the vibrating walls of the
capsule are based on the experimental data measured on board the system Mikroba*.
This system shares the fall from a stratospheric altitude: it is not, however, a free-falling
experimental package inside the shiclding capsule. In Mikroba, the measurement
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package or experiment is solidly attached to the walls of the falling capsule. Moreover,
Mikroba is not propelled during the first 30 s (like our experiment) although it is
propelled downwards during the next 30 s. Once the magnitude of the acceleration at the
walls la,,l is known, the magnitude of the acceleration at the falling package lal can be
readily computed as explained in the following. The motion of the vibrating walls
increase the kinetic energy of the gas molecules above the thermal velocity. The kinetic
energy variation is then expressed as a pressure variation Ap of the gas after equating the
increase in kinetic energy to the work done on the gas molecules by the vibrating walls.
We then assume, conservatively, that the pressure perturbation Ap acts on one side only
of the instrument package in order to compute an upper bound of the acceleration
disturbance imparted to the package. The upper bound of the acceleration at the
instrument package is as follows:

Ap Ap
lal = Iuwall I = Iawall ! (12)
mv mawv
w‘ I"II = ' ABSCHLUSSPRASENTATION
L ST MIKROBA 6 _ o
BESCHLEUNIGUNGEN - * ;,;f - 1 Fallschirmstufe " " _3. Fallschirmstufe
s L L. Fallschirmstufe
= : f\m ,
;_:_T T T ‘-?? B s v,.m...: ~
e T )
— .7;__:_“_.} ————— e ¥ 2'AAL ‘ Al A'A B
. — ‘%__
—-4L—r—~—v+ e —— i‘i S : =
TTTlesek. AT 605ek. L 120 sek. _.__:__*—_:::::* 180 sek.

[ U

Figure 13 Acceleration measured on board the Mikroba capsule (with accelerometer
solidly attached) during the fall [Kretzchmar, 1999]

In equation (12), A and m are the cross section and mass of the instrument package, v
is the thermal velocity of the residual gas, a and a,,,, are the accelerations of the package
and the wall, respectively, p is the pressure inside the capsule, u,,, = a,,/o is the velocity
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and o the angular frequency of the vibrating walls. If, for example, p = 10° mBar and the
temperature of the gas inside the capsule is slightly higher than LHe, we obtain an
attenuation factor a/a,, = 6x10'"° at the signal frequency of our experiment (~0.5 Hz). In
other words, the high vacuum provides an excellent attenuation of the wall vibrations.
Moreover, the capsule walls do not necessarily vibrate at the signal frequency of the
instrument. The cryostat will be designed with structural frequencies much higher than
the experiment signal frequency. However, in this early stage of the design and for
conservativeness, we assume that the wall acceleration has a component at the signal
frequency with an intensity equal to the largest magnitude of the acceleration recorded on
Mikroba during the first 30-s of fall, that is, a,, < 10* g (although not very visible in Fig.
13). We then obtain an acceleration at the instrument package of order 10" g under
rather conservative assumptions. Consequently, the free-falling capsule reduces the
acceleration noise to values unmatched by any other Earth-based drop facility and
comparable to values achicved on board the Triad drag-free satellite™".

The acceleration components above are common-mode-type (i.e., they affect equally both
sensing masses) thus they can be further reduced by the common-mode rejection fact of
the differential accelcrometer. With a typical valuc of 10 for the CMRF, the influence
of these accelerations on the differential measurement is made negligible.

The acceleration noisc components produced by the residual gas in the capsule are
proportional to the pressure inside the capsule. The pressure can be reduced in
successive flights if, for any unanticipated reasons, its influence on the measurement
proves to be greater than expected. It is, in fact, well within the state of the art to obtain
pressures at room temperature as low as 10® mBar in large volumes.

Internal noise of detector

The most important internal noise sources for a high accuracy mechanical detector like
the one proposed for this WEP test are: (1) preamplifier noise; and (2) thermal noise
(Braginsky, 1974*; Giffard, 1976™). The combined effect of these two noise
components upon the acceleration spectral density S, of the detector's output is given by
the following equation for an instrument with the measurement frequency smaller than
the resonant frequency wg, a measurement bridge pumped at the frequency w; (of

XXI,

typically tens of kHz) and a preamplifier that matches the transducer impedance™:

1/2

S, = g/\Hz (13)
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In equation (13), the two terms in round parentheses correspond to the Brownian noise
and the preamplifier noise, respectively; wg is the detector resonant frequency; kg the
Boltzmann's constant; T the ambient temperature; Ty, the preamplifier noise temperature;
Q the quality factor; mefr the effective mass of the sensing mass; and A the
electromechanical transducer factor. The effective mass is used to convert a rotation of
the sensing mass into a translation of equal energy. Its relationship to the mass m is: meff
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= m(ny/l)? where 1 and [ are, respectively, the radius of inertia and the lever arm with
respect to the rotation axis of the sensing mass. With the geometry of the sensing masses
in our detector mefr = 1.8m.

Clearly, from eqn (13), we see that the sensitivity of the detector increases by
decreasing the resonant frequency and the temperature, and by increasing the mass of the
sensing masses and the Q-factor. Liquid He (4.2 K) refrigeration will be used to provide
low Brownian noise and a high Q-factor. These are necessary conditions to achieve the
desired measurement accuracy. In order to derive requirements for the detector, we
assume that the contribution of the Brownian noise is about equal to the contribution of
the preamplifier noise. In this case, if we set our experiment accuracy goal to several
parts in 10" (with 95% confidence level and a 20-s integration time) each one of the two

noise components should be about 10™ g/+/Hz or smaller. These noise requirements
imply the following (see also the section on Requirements Development):

T<10K; T, <60 mK; m > 2 kg; w/Q < 65/ 10° rad/s (14)

These requirements do not exceed the state-of the-art but they do require a very
careful construction of the detector with low dissipation and the use of very-low-noise
preamplifier. Key quantities like the Q-factor at low temperature and the preamplifier
noise will be measured experimentally by our partners at IFSI once a prototype
laboratory detector is built and operated at LHe temperature. Noise contributions other
than the intrinsic noise components of the detector should be kept at a lower level in
order to make them smaller than the intrinsic noise.

Gravity Gradients

Capsule Gravity Gradients

The gravity gradients generated by the distributed mass of the chamber/cryostat and
their effects on the differential measurement are analyzed in the following for a generic
position of the detector inside the capsule and a generic orientation of its spin axis with
respect to the gradient field.

Gravity gradient for a mass distribution with cylindrical symmetry

For a mass distributed with cylindrical symmetry, the resultant gravitational
acceleration has two components:

a,= acceleration component along the cylinder axis
a, = acceleration component along the cylinder radius
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Figure 14 Reference frames for gravity gradient analysis

After erecting a Cartesian reference system xyz as depicted in Figure 14, the
components of the gravity gradient tensor are computed according to the following
transformation formulas:

dx =cos(@)-dr -r-sin(0)-do

dy = sin(@)-dr + r-cos(@)-do (15)
da,  =cos(0) da, -a, sin(0)-do

da, =sin(@)-da, +a, -cos(6)-do

Setting 6 = 0 and indicating the spatial derivative with a second subscript:

ax = a)

a,= 0

and

aXX = I

a, =

a,=a,lr (16)
aX. = aZX = ar"

a

arr 0 aI‘Z
a 0
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As a result of the Laplace equation, the trace of the gravity gradient tensor is equal to
zero, that is

a,+a,lr+a;,=0 (18)

In the singular case of r = 0 the limit calculation yields:

a, 0 0
Fw=[0 @ 0 (19)
0 0 -2a

Gravity gradient matrix of a rotating body

In general a gravity gradient matrix has the form:

r, I, I.
=1L I, [ 20)
FZX rVZ FZZ

The rotated matrix I"” after a O = wt rotation is:

ro= R,IR! 2}
where Ry is the rotation matrix and R, its transpose.

After a rotation about an axis (i.e., the x axis), the rotated matrix has four components
modulated at w, four components modulated at 2w and one component that is not
modulated.

The w-modulated components of the transformed matrix are:
I, =T =T sin(w- 1)+ [, cos(w- 1) (22.1)
I;=T3 =T cos(w- ) - T, sin(w- 1) (22.2)

where the rotated axes are labelled x” = 1,y = 2, 2’ = 3. In summary, the off-diagonal
components I\, =I"";, and I”, = I'’;, of the gravity gradient matrix produce components
that are modulated at the rotation frequency.
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Gravity gradient matrix projected onto body axes

In a general case the body reference frame placed at the CM of a sensing mass of the
detector can be identified with respect to the cryostat frame by means of 3 successive
rotations as follows:

1 - Rotation +o around z axis (azimuth rotation)
2 - Rotation +f around y’ axis (elevation rotation)
3 - Rotation +t around x’’ axis (spin rotation)

In the computation of gravity gradients, these rotations can either be rotations of the
sensing mass with respect to the cryostat or, equivalently, rotations of the cryostat with
respect to the sensing mass. In the former case, and solely for the reason of pointing out
a typical geometrical situation, the first and second rotations could, for example, be
caused by the detector dynamics during free-fall (e.g., precession of its body axes) while
the third rotation is the wt rotation of the detector about its longitudinal axis aimed at
modulating the signal.

Clearly, we are mostly concerned about the components of the gravity gradient matrix
that contain a frequency ® equal to the modulation frequency of the signal. We can
choose the body axis y’ = 2 to coincide with the sensitive axis of the accelerometer and,
consequently, we are only concerned with the component I'’,, of eqn. (22.1). In general,
the moduli of the two components I'’|, and I’ ; are the same and they can be written as
follows:

x = Jrn? +T.° (23)

After rotating the original matrix by two rotations o and f§ (where a is the azimuth of the
spin axis with respect to the radial and B is the elevation with respect to the capsule
equatorial planc) the expressions of T', and T, in eqn. (23) are as follows

T, = k sin(B)sin(a) - k, cos(B)sin(2a) (24.1)
T = k;sin(2B) + k, cos(@)cos(2p) + k, sin(2B)cos’ () (24.2)
k= a, (24.3)
k, = %(a“ -a,) (24.4)
ky = —;—(a_“ -a.) (24.5)
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where the a; are the matrix components before the rotations are carried out. In the case of
a body with cylindrical symmetry and for cylindrical coordinates, eqn. (16) yields a,, =
a,,a, =alr,a, =a,,a,, = a, and the other components are null.

After carrying out a numerical analysis of eqns. (24) and taking into account that
inside a cylinder k, is always at least one order of magnitude Icss than k, and k,, we find
that the maximum value for y occurs for a = 0 (where « is the azimuth). This result
implies that the maximum disturbance of the capsule gravity field on the differential
accelerometer is produced when the capsule moves radially with respect to the sensor
(see Figure 15) in such a way that the spin axis is oriented along the radius of the cylinder
through the sensor and the capsule has been displaced radially with respect to the sensor
(c.g., by wind shear).

spin axis

Figure 15 Geometry of sensor and capsule (viewed from the top) for strongest gravity
gradient affecting the measurement

On the opposite end, if the motion of the capsule is such as to keep a close to 90°,
that is the spin axis is orthogonal to the radial, the disturbance is minimum. In any case
since the translational motion of the capsule is not predictable nor controlled, the worst
condition is analyzed setting o equal to zero and varying the angle B. After doing so
eqns. (23) and (24) yield:

X = (k3 + k,)sin(2B) + k, cos(2B) (25)

Equation (25) summarizes the disturbances induced by the cryostat mass modulated
at the measurement frequency. This equation is important for the cryostat/capsule design.
The variations of the quantities k,, k,, k; inside the cryostat for different shapes and sizes
are analyzed numerically in the following subsection.

Variation of k,, k,, k;in the cryostat/capsule

A numerical code has been developed in Matlab to compute the gravity gradient
matrix inside a distributed, massive cylinder. The program, which uses a very large (of
order 10*) number of mass points, can map the desired components of the gravity
gradient matrix inside the enclosed surface. The code has been applied to a number of
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cylinders with different H/D ratios (where D is the diameter and H the height) and
different shapes of caps. Each run takes a couple of hours on a Pentium III PC.

Cylindrical cryostat without caps

We first analyzed the gradient field for various cases of cylinders with various H/D
(height over diameter) ratios to conclude that the gradient field is strongly reduced (for
the components of interest) for H/D > 1

The following results are for a cylinder of uniform mass distribution with the following
characteristics:

Cylinder mass = 500 kg; Dimensions: 1 m (dia) X 1 m (height)
A

4

i
-

\ £Y

Figure 16 Schematic of cylinder and reference frame
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Figure 17 All components of gravity gradient along a vertical profile at r = O (units are
f,=ma, in kg/s’ = s for 1-kg test mass)




Vertical profiles atr =10 cm
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Figure 18 All components of gravity gradient along a vertical profile at r = 10 cm (units
are f,, = ma,, in kg/s’ = s for 1-kg test mass)

Vertical profiles at r = 20 cm
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Figure 19 All components of gravity gradient along a vertical profile at r = 20 cm (units
are f, = ma,, in kg/s* = s for 1-kg test mass)




Vertical profile at r = 30 cm
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Figure 20 All components of gravity gradient along a vertical profile at r = 30 cm (units
are f, = ma,, in kg/s® = s™ for 1-kg test mass)
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Figure 21 All components of gravity gradient along a vertical profile at r = 40 cm (units
are f,, = ma,, in kg/s’ = s for 1-kg test mass)
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The following is a contour plot of the k; component inside the cylinder and the radial
profiles of this component along radii at various distances from the cylinder’s equatorial
plane.
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Figure 22 Contour plot of capsule gravity gradient componentk; = a, (s®) for a cylinder
with H/D = I-m/1-m
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z =10 cm (above cylinder’s equatorial plane)
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Figure 23 Gravity gradient (a, = k, component) for latitudinal sections at different
distances above the cylinder’s equator (units are f,, = ma,, in kg/s* = s~ for 1-kg test mass)
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Figure 24 Contour plot of capsule gravity gradient component a,, (s?) for a cylinder with
H/D = 1.5-m/1-m

Figure 24 shows the contour plot of the k, = a,, component for a cylinder with H/D =
1.5-m/1-m. Note that the strength of the gravity gradient in the area of interest (ncar the
cylinder’s centerline) is strongly decreased thanks to the lengthening of the cylinder in
the vertical direction.



As the cylinder is stretched along the vertical, the effect of the cylinder edges (which
produce stronger gravity gradients) is smaller the closer the detector is to the cylinder’s
centerline, where the detector free falls. In the following plots we will show all the
gravity gradient terms k|, k, and k; (modulated at w) inside a cylinder with dimensions
close to those that we are considering at the present stage of development of the design.
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Variation of k. k,. and k, along free-fall trajectories

Based on the evaluation of the dynamics of the instrument package relative to the
capsule (see also later on), we can map trajectories of the instrument package inside the
capsule and evaluate the maximum values of the gravity gradients that the detector will
experience during the fall.

It is important to evaluate the strength of the gravity gradient field inside the cryostat
along a worst-case trajectory of the instrument package (sensor) that moves with respect
to the cryostat/capsule during free fall. Based on worst-case wind shear conditions the
trajectory (in z-r coordinates) of the sensor with respect to the cryostat can be expressed
as follows:

a p 2
z=2, - —1 exp(ct’)
0
2,6
t .
r=r, - £, (z-zy)siny
8np,

(26

with a = 0.149636, b = 0.001692, ¢ = 3.084, and d = 6x10” (see section on Optimization).
In equation (26), B, is the low-speed ballistic coefficient, z, and r, are the coordinates of
the point of release in the cryostat coordinate frame and y is the angle of the capsule’s
longitudinal axis with respect to the local vertical which (at this stage of the project)
represents a reasonable upper limit for the verticality error of the capsule during the fall.
This trajectory will beused in the next subsections.
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Cylindrical cryostat with flat caps

The Matlab routine has been modified to include
cryostat caps of different shapes. The routine
creates a two-dimensional mesh of point masses
uniformly distributed on the average surface of
the cylinder and its caps. In the case of flat caps
the mass distribution results in a closed
cylindrical surface of height H and diameter D.
The gravity gradient field has been mapped on
the z-x plane where x coincides with the
cylinder’s radial and z with the longitudinal axis,
as far as s = 10 cm from the top and bottom and c
=20 cm from the side walls.

The point of release P lies on the symmetry axis of the cylinder and at d = 40 cm from the
top. The sensor trajectory obeys eqns. (26) with , = 10000 kg/m’ and the capsule
verticality error y = 5° has been conservatively assumed to produce a lateral displacement
of the sensor in the same direction of the wind shear. The other parameters in eqns. (26)
also represent a worst-case scenario for lateral displacements. The key quantities k,, k,
and k, are plotted as contour plots on the x-z plane in Figs. 26.
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The quantities k;, k,, k; are then computed along the trajectory of the instrument
package and the power spectral densities are computed over the free-fall time of 26 s.
Results are shown in Fig. 27 where the peaks with frequency 1/t; = 1/26 Hz due to the
free-fall duration, are clearly visible in the spectra.
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46



Figure 26 shows that the quantity k; is relatively larger than k, and k,. Consequently,
eqn. (25) poses a limit for the angle (3 that defines the capsule attitude with respect to the
spin axis of the sensor. After neglecting the much smaller k, (and k, which depends on

cos(2f)) we find that the maximum allowable 3 is:
27

ﬁmnx - _l_sin-l Xmax
2 k,

With a .., of 10° s and the results shown in Fig. (27), we obtain a limit of 4.8 deg for

B, which is a relatively large value.

Cylindrical cryostat with hemispherical caps

A
o A cylindrical cryostat with hemispherical caps has also
BOnE ABnGE been analyzed. The gravity gradient distribution has been
ORI mapped on the x-z plane, where X is the cylinder’s radial
o and z the longitudinal axis, between the base of the upper
and lower hemispheres and as close as ¢ = 20 cm from

.....
H

BEICRE: the side wall.
— The release point P (and starting point for the simulation)
lies on the symmetry axis of the cylinder and at the base

of the upper hemisphere. The sensor trajectory is the
same as in the previous case.
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Figure 29 k,, k,, k; along the trajectory and their spectra.

The analysis carried out here and additional results not shown in this report lead to
the definition of a stand-off distance of about 40 cm between the sensor CM and the
heavy part of the cryostat walls to provide w-modulated components of the gravity
gradient that are sufficiently low for the sizes and masses relevant to this project.
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Earth’s gravity gradient

We compute here the Earth’s gravity gradient tensor and we analyze the effects of
Earth’s gravity gradient components on a rotating detector with a generic orientation of
its spin axis with respect to the gravity gradient field. Let us consider the gravitational
potential per unit mass at a point (X, y, z) with respect to the detector’s center of mass:

V- — : (28)
Jx=R)*+(y=Ry)? + (2~ R,)?

where Ry, Ry, R; are the components of the radius vector R from the Earth’s center to the
detector’s CM (in which Z is the local vertical) and p is the Earth’s gravitational
constant. After projecting about the detector’s body axes in which x is the spin axis and
calling 8 = wt the rotation about the spin axis and ¢ the elevation angle of the spin axis
with respect to the horizontal plane:

R, = R(1)sin(¢)
R, = R(t)cos(¢)sin(wr)
R_ = R(1)cos(¢)cos(wr)

(29)
The gravitational acceleration in body axes is obtained by substituting eqns (29) into

eqn. (28) and computing the gradient:

{gx 8y-8z }T =-VvV (30)

The components of the gravity gradient matrix in body axes are finally computed by
taking a further derivative with respect to the spatial coordinates, to yield

8o = —%[—2 + 3cos’(¢)] (3L.1)
& = 3sin(@r)cos(g)sin(p) (31.2)
8 = 3w cos(@i)cos(@)sin() (31.3)
& =~ v 1= 3c05°(9) + 3cos (wn)cos’(9)] (31.4)
8. = 3%008(aﬂ)sin(ax)cos:(¢) (31.5)
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g.= %[-1 + 3cos* (wr) cos*(§)] (31.6)

Here again, the components modulated at ® are g,, and g,, (in which x is the spin
axis). In other words, if the spin axis lies on the horizontal plane, the detector only sees
components modulated at 2w but if it is not, components modulated at the frequency
o appear. The strengths of these components are proportional to the tilt angle with
respect to the local horizon. Note also that the effect of the Earth’s gravity gradient on a
rotating body can be readily applied to the space-based tests of the Equivalence Principle
in which the only difference from the balloon-based experiment is the slightly larger
value of the radial distance from the space-based sensor to the Earth’s center.

An alternative way of portraying the origin of the w-modulated components of the
Earth’s gravity gradient field is by considering the following. If the z-axis of the body
reference frame is directed along the local vertical (that is the spin axis x of the sensor is
on the horizontal plane) then the gravity gradient tensor is

-1 0 0
I, = szﬁ‘ 0 -10 (32)
0 0 2

The tensor does not change under a rotation about the z-body axis due to its structure
which reflects a symmetry about the radial line. Consequently, we can choose the
azimuth orientation of the spin axis at will (let us call it the y-body axis). A rotation ¢
about an axis perpendicular to the spin axis produces terms g’,, = g’,, in the transformed
tensor:

oM g9 0 2@
Iy = RT*R; = —E£[0 -1 0 (33)
gQ 0 2@
where

gQ=—-1+3sin’¢
gQ=-1+3cos’ ¢ (34)
g@ =84 = —3Sin¢COS¢

The g’,, and g’, terms are subsequently modulated at the frequency w by the rotation
8 = wt about the spin axis as shown previously.

Since there arc terms modulated at the signal frequency w, we have to make sure that
they are kept lower than the accuracy with which we want to measure the signal. From
the detector point of view, there will be requirements imposed on the centering of the
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sensing masses and their orientation with respect to the Earth’s gravity field as shown
later on.

Disturbances induced by concentrated masses on board the capsule

Let us consider the reference system (x, y, z) fixed to the sensor with origin at the
center of mass and with x oriented along the spin axis and let us indicate the position of a
point mass m, in proximity of the sensor in spherical coordinates (3.y,p) (see Fig. 30).

Figure 30 Geometry of the sensing mass and reference frame
The position of m, is then expressed as:

x, = pcosd cosy
¥y, = psindcosy 35)
z,=psiny

The gravity gradient matrix at the detector due to the gravity field induced by a mass
point m,, is:

3x’ - p? 3xy 3xz
G-m, , s
l"mp = o3 3yx Ix-p 3yz (36)
3zx 3yz 3x* -p?

Considering a sensor that rotates with respect to a fixed point mass in its proximity
we obtain the two w-modulated components already shown in the previous paragraphs:

I, =T, =T3sin(w- )+ I}, cos(w - 1) (37.D)
I, =T, =T, sin(w-7) - T, cos(w - 1) (37.2)

13
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The moduli of the two w-modulated gravity gradient components I'’, and I’ ; are the
same and can be expressed as follows:

G- 2 B
X = 2+ 5 38)

o

which shows that the masses located on the plane y-z (i.e., x = 0) do not generate
disturbances with the same frequency as the measured signal. Substituting eqn. (35) into
(38) and extracting p yields the minimum distance for a point mass to produce a
disturbing gradient equal to or less than the critical gradient a,, ,,,:

173
lcosédcos )/|\/sin2 Scos’y +sin’y (39)

G-mp

P, min =

gg—max

Setting a limit of 10” s for a,,,, we plot the locus f(p,y.0) = 0 of the points in space
with a,, = a,,,,, in Figurc 31 for a disturbing point mass of 1 kg. Next, meridian sections
(rotated about the z-axis by the meridian angle 8) of the same locus are plotted for
different values of the angle d in Fig. 32 where r is the radial direction.
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Figure 31 Locus of w-modulated gravity gradient component with strength = 107 57
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Figure 32 Meridian sections of locus in Fig. 31 for different angles 8 [6 = 0 (i.e., y-z
plane) - solid black line; 6 = 15° - blue dots; & = 30° - red dash; & = 45° - gray dash dot]

The worst case meridian scction at § = 45° is plotted for different values of the
perturbing mass in Fig. 33.
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Figure 33 Meridian sections for & = 45° and different values of perturbing mass m,
(m,, = 1 kg - solid black line; m, = 10 kg - blue dots; m,= 100 kg - red dash)

The previous analysis defines exclusion zones for concentrated masses on board the
capsule. In general, masses can be placed rather freely on the y-z plane (perpendicular to
the sensor spin axis). Masses lying on this plane generate only 2w-modulated components
whose strength only needs to be reasonably smaller than the upper bound of the dynamic
range of the sensor. The Earth itself produces such 2w-modulated components with a
strength equal to 3x10° s~ that is well stronger than the sensor sensitivity (for realistic
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values of the sensing mass CMs errors), but is about 3-orders of magnitude lower than the
upper bound of the sensor dynamic range. For the 2w-modulated term, the equivalent
Earth is a mass of 22,500 kg at 1-m or a 22.5 kg at 10 cm from the sensor.

Requirements related to the w-modulated components are more stringent and,
consequently, we will concentrate on these components which have been dealt with in
this analysis. In summary, concentrated masses should be placed as close as possible to
the y-z plane (perpendicular to the sensor spin axis). For masses away from the y-z
plane, Fig. 33 defines the exclusion zones from the sensor for different mass values under
the worst possible condition of masses placed on the 45° meridian plane.

Effect of Gravity Gradients on Differential Acceleration Measurement

The differential accelerometer consists (from the mechanical point of view) of two
sensing masses with ideally coincident centers of mass (CM). The equivalence violation
signal is measured as a differential displacement along the y-body axis of the sensor
which is orthogonal to the spin axis along the x-body axis. In reality the two centers of
mass (or more appropriately centers of gravity) do not coincide and CM, (i.c., the CM of
mass 2) is displaced by a position error vector & with respect to CM, as follows

6X
6 = |5, (40)
6:

We can place the body reference frame at CM, and compute the differential
acceleration due to gravity gradients by simply multiplying the gravity gradient matrix in
body axis , that is

M.\' 6_\'
da,| = (TE+TC +T" )5, (41)
daz 0.

where T, T, ™ are the gravity gradient matrices of the Earth, the distributed capsule
mass and concentrated masses on board the capsule, respectively. Since the differential
accelerometer measures only the component along the y-body axis, we obtain finally:

da, = (Th+TS+TH)8, + (T + TS +Ti0, + (ML + T + TY)6. (42)

in which T, T, and T} are the components modulated at the signal frequency o while
the other terms in eqn. (42) are modulated at 2w. In conclusion, the disturbing
differential acceleration along y produced by gravity gradients can be expressed as

follows:
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6a), < 3%cos(¢)sin(¢) sin(wr)d, + [(k2 + k3)sin(2P) + k, cos(2/3)]sin((ut)6x 43)

+ ay(w) + f,Qwb,) + f.Q2wd.)

where k;, k,, and k; are the gravity gradient terms (see previous subsections) generated by
the capsule in the capsule-body reference frame, ¢ is the elevation of the spin axis with
respect to the local horizon, B is the elevation of the spin axis with respect to the
equatorial plane of the capsule, ay(w) is the w-modulated disturbing acceleration (in
functional form) produced by concentrated mass on board the capsule (see previous
subsection) and f (2w, 3,) and f,(2w, 8,) represent all the other 2w-modulated components
which have been separated in eqn. (43), according to the centering error components.
Note that the 2m-components depend on the centering errors 8, and 8, while the -
components depend only on the centering error 6,. The less-than sign in eqn. (43) is due
to the fact that, on the right hand side of the equation, we have adopted the strongest
value of the w-modulated gravity gradient component of the capsule, that is, for a = 0
(see Fig. 15). Moreover, from the analysis of the capsule gravity gradients, we have
concluded that if we keep the sensor (at the CM) about 40 cm away from the heavy part
of the chamber/cryostat walls, the w-modulated gravity gradients are well below the
critical value of about 10° s?. Based on similar reasoning, we assume that the
concentrated masses on board the capsule are placed outside of the exclusion zones
(defined in the previous subsection) in order to keep them below the critical value. In
other words, an appropriate design and a careful mechanical construction of the sensing
masses (9, of order microns) will make the gravity gradient contribution of the capsule
and the concentrated masses on board the capsule negligible.

To attenuate the effect of the gravity gradient of the Earth we have to make sure that
the product sin(¢)cos(¢)d, is sufficiently small. In other words we can trade the position
error between the CMs of the sensing masses along the spin axis 8, for the tolerable angle
¢ of the spin axis with respect to the local horizontal. For small values of ¢, we readily
compute that for the first term on the right hand side of eqn. (34) to be smaller than, let
us say, 10™° g, the product ¢d, must be smaller than 0.1 deg-um. This requirement must
be considered in the design of the detector, the release mechanism, and the capsule
leveling system of the capsule. The complexity of some subsystems can be traded for the
simplicity of other subsystems among those three devices.
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THEORETICAL IMPACTS

Contribution of Parity Non-conserving Weak Interactions

Introduction

A theoretical question that we sought to address can be simply stated: What is the
contribution to the mass-energy of each material due to the parity non conserving part of
the weak interaction? The reason that we sought an answer to this question was to find
out if our experiment would be sensitive enough to determine whether or not this
contribution obeys the weak principle of equivalence.

Unfortunately, the present level of development of physics does not allow us to
address our question reliably. Knowledge of the physics of nuclear matter is too
primitive. We have therefore had to make a number of "rcasonable," but nonetheless
somewhat arbitrary, assumptions to carry out the calculations. The discussion below
mentions each of these assumptions. The results of the calculations indicate that our
experiment will not be sensitive to the contribution to mass-energy of the parity non
conserving part of the weak interaction.

Evaluation of contribution

The materials to be compared in the experiment should have binding energies stored
in forms which are as different as possible. For example, if gravity couples differently to
protons and neutrons, we should compare elements with different proton to neutron
ratios. A new long range force could also be detected by comparing such elements. A
force coupling to baryon number would cause an acceleration proportional to the total
number of protons and neutrons divided by the mass, or for a single nucleus, to

m, —-m
(Z+N)/(m, Z + m, N)~1/mN(1-(—p—") x). Here x is the ratio Z/A and Z, N and A are

my
the number of protons, neutrons, and combined nucleons. The mass myis used for the
common mass of protons and neutrons. In order to observe this effect, it is best to
compare heavy elements with x~1/3 to light elements with x~1/2.

As we will see below, the energy of a nucleus can depend very sensitively on the
wave functions of the protons and neutrons. We will discuss a force coupling to the
product of proton and neutron densities. Such a force is more significant for nuclei in
which proton and neutron wave functions have greater overlaps. This suggests choosing
a nucleus with a magic number to compare to a less stable nucleus. The filled shell
structure of a nucleus with a magic number may imply greater overlap of the wave
functions of the protons and neutrons.
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Suppose gravity couples differently to the energy produced by the parity violating
part of the weak force. We must calculate what fraction of a nucleus’s energy is stored in
this form, although we will see that it is not very well defined. First of all, right-handed
neutrinos do not appear to exist, so it is not just the weak force which violates parity. The
model used in Ref * to calculate the total weak force energy of a nucleus is a current-
current interaction. To discuss this, let us consider the Lagrangian for the interaction of

the weak force with quarks and leptons. Schematically, it is A4, £ +J"), where J and

Jsare the weak vector and axial currents, and A is the field of the weak force. (This
expression must be summed over the three types of W particles; this formula ignores the
fact that the observed W and Z particles are actually linear combinations of these three
fields with a fourth field.) By including both terms, we ensure that the coupling to right-
handed particles cancels. The first term here is the parity violating term. However, if we
use a contact interaction, taking into account the large mass of the W particles, we find an

interaction of the form L, =(J,, +J;XJ" +J°*). Multiplying this out, we get four

terms—only the terms coupling the axial current to the vector current seem to violate
parity in this description of the weak force. Another difficulty is that the separate vector
and axial currents are not actually well defined if right-handed neutrinos do not exist.

Since the parity conserving parts of L contribute one part in 10° to the mass of a
nucleus, current limits imply that gravity’s coupling to these terms must differ by less
than 10™ from its coupling to other matter. The parity violating terms of L. contribute
much less to the mass of a nucleus. If li> is the state of the nucleus with weak forces

neglect, then the first order perturbation of its energy due to these terms is <ilJ"J ,f >,

which vanishes by symmetry. (li> is a parity eigenstate, so the operator changes its parity,
and gives a state orthogonal to <il.) This ensures that the contribution of the parity
violating terms is second order in perturbation theory, and therefore small enough to be
unconstrained by previous experiments. However, L, is only useful for calculations. It
would be strange for gravity to couple differently to the parity violating part of the weak

force unless it coupled differently to J/ ,fA" in the original Lagrangian. In this case

J ,S,J * would also couple differently to gravity, and this would be a much larger effect.

While we are deciding which terms of the effective Lagrangian will be considered
to be parity violating, we should notice that there are other parity violating interactions
involving pion exchange™*®. Ref. xxiv probably overestimated the contribution of

J.J" to the weak energy of a nucleus, because of the assumption that the nucleons are

distributed independently of one another in a nucleus. In fact, protons and neutrons are
generally not closer to one another than their radius of 10" m, or (160 MeV)"! as
compared to the range 1 GeV™' of the weak force. Thus, the weak interaction of nucleons
occurs only very rarely. The pion exchange force has a range larger than the size of a
nucleon, so the assumption that nucleons are independently distributed is more accurate
when considering this force.

The interaction between nucleons and pions is described by the Lagrangian
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L, = "ignNNN)’sf AN -+ f, I—V_(f x7T), N
(Ref xxv) where we have used isospin notation, so that N is an isospinor of proton and

neutron fields: N= ( p
n

) , T is a vector of three Pauli matrices, and & is the vector of pion

Tt +m in’——n‘
NN/

Lagrangian represents pion exchange due to the strong force ( gy, =13.45), the second to

fields, which are usually written as ( ,m"). The first term in the

the weak force (f, =4.54x 107). This term violates parity. We will calculate
contributions to the energy of a nucleus arising from this term.

Any interaction in which a light particle like the pion is exchanged can be
approximated by interaction potentials. For example, we begin with a simplified model
of spin zero protons and neutrons which can exchange a neutral spin 0 pion (of mass m,).
Let the interaction Hamiltonian be g(n'n+p'p)x. Then the amplitude for pion emission is
—ig. Let us calculate the potential acting between protons and ncutrons. The Feynman
diagram is:

® n J;/ Fs
P
N\ P
Y
! a

v 1T

. 2
The amplitude associated with this is 4= :v(—ig)2 d ~—£ —. We have

2 2

2 -2 2
qg- -m,~ g +m,

omitted the time-like component of q, since this is the energy transferred between the
nucleons, and is small compared to the momentum in the non-relativistic limit.

Compare this to the calculation of scattering under the influence of a potential V.
i(PrF,+p2ty) i(P3ry+py'Fp)
———— and |y, >= —————— . Intime
(2n)’ T @y

independent perturbation theory, we solve for the coefficient

Let the initial and final states be |y, >=
t ) ,

c; =< fIT(-.0)]i>= [<f|V]i> e B gp—== sy 2a8(E, - E,) .

It is not hard to check that Vy=58(p + Ps - By - ﬁ4)fd35c' V(X)e -
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The Feynman amplitude is closely related to this coefficient; however, it is
calculated with the wave functions normalized so that

< psps | PP, >=4E\E, (2-7‘)36(,51 =P8 (p, - p,) = 4'"N2(2’T)66(ﬁ| = P;)0(p, ~p,)
Thus we must multiply our value for ¢, by 4m N2(2.7t)“ . The relationship between ¢, and
A is thus

iA(2n)'8(E, + E, - E, ~ E,)8(p, + p> - B, - B,) = 4m,” (2n)°c, .
Therefore

A=—-4m Nzi f V(x)e*d’x . and the inverse Fourier transform of this gives V. We find

2 —m |5
- -ge . . . .
that V' (x) = ———‘-g,———T , where the transform is evaluated using spherical coordinates.
(4m, " Yan | X |
This is the Yukawa potential, but it is not actually the true interaction potential of the
protons and neutrons, since protons and neutrons really have spin 1/2, and have axial
couplings to the pions.

Expanding the Hamiltonian given above, we find the parity conserving and parity
violating pion-nucleon interactions

Hp. = igaNNfd3f(stP '”75”)”0 + '\/f(pys””* +Ayspn”)
and

H,, =%fd3,i:pnn* -mpn” .

The n’s are pseudoscalar particles and pyp and similar terms are scalars, and so it is the

first of these interactions which is parity conserving. This is actually a convention, since
if the second interaction had been discovered first, the pions would have been called
scalar particles. A consequence is that an interaction between nucleons by exchange of
pions is equivalent to a parity conserving potential as long as both pion-nucleon vertices
are governed by the same interaction. If the pion is emitted according to the parity
conserving interaction and absorbed according to the parity violating interaction, then the
equivalent potential distinguishes between left and right. We call the three potentials

4 v

PCPC>" PYPY >
violating or parity conserving).

Voree » Where the subscripts indicate the nature of the pion exchanges (parity
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Since the PVPV interaction is mediated only by charged pions, the only possible

interaction is the above. The proton turns into a neutron when it emits the 7 * in order to
conserve charge. The calculation of the potential associated with this interaction is very
similar to the calculation above for the simplified model. There are two differences.
First, the extra factors proportional to the mass which arise from normalization
conventions do not occur for spinors. Second, since the proton and neutron have two
spin states, we must determine how the interactions affect their spins. Since the pions are
spinless, a nucleon’s spin does not flip when it emits a pion. Thus if thc proton initially
has spin up and the neutron is spin down, then the scattered proton has spin down and the
scattered neutron has spin up. The effective potential for this interaction is

5

2 —m, |7 =)
S e
2 4n|r -1, |
and neutrons into protons.

V(';'; —Fz)=

X , where X is an operator which turns protons into neutrons

Since particles can change types, we will use second quantization. The operator
n (7, )pr(F,)+nI'(Fl )p, (;) turns a proton at point r, into a neutron at thc same point
with the same spin. So the operator X is equal to
[PT PN, (7)) + py (F)n (F) e (7)p, (7)) + ) (7)p, () ]-

The interaction Hamiltonian is therefore

s —n1, |7 =1

3= 43 £ € . - - ~ - - - -

Hpppy = ~[[d°Rd’F, - = T—r_—llp;(n)nT(rmp{(r,)mr,)un;(rz)pT(rz)+n;(rz)p¢(r2)1.
h=r

This interaction does not seem to mediate a force between two separated

nucleons, since the nucleons can’t retain their identity. In particular, it cannot mediate a

force between two separate nuclei, even though it does contribute to the binding energy

of a single nucleus. Suppose the nucleus can be modeled as consisting of two Fermi seas,

one of protons and onc of neutrons. (Of course H ,--, which is much larger than any
parity violating interactions, produces correlations in nuclei.) There are protons of both
spins and of every momentum less than k,, and there are neutrons up to k,. We will
assume the nuclcus is very large so that we can approximate the waves by plane waves,
and we will calculate the energy density due to H,, . Then since the proton and
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neutron which interact are in the same nucleus, the interaction does not change the
nucleus type.

The energy shift is <il H,,,, li>. Consider the action of H,,,, on the Fermi sea.

It acts on two particles—a proton of momentum l;, and a neutron of momentum EZ .
changing their momentum and interchanging their particle types. Since the resulting state
is multiplied by <il, it must have the same occupied states as li> in order to give a nonzero
contribution to the energy. Thus the final proton must have the same momentum as the
initial proton, as in the following diagram:

Also, the particles must have the same spin, since the interaction does not flip spin.

In order to see at least one failure of our approximations, we consider two general wave
functions for a proton and neutron and calculate their interaction in these states. We
ignore the spin wave function, and set

¥ >= (/i) LE) | pn> =1, () [ np >)

The wave function here is antisymmetric in space and isospin, according to the Pauli
exclusion principle for multiple types of fermions. Thus neither 7 nor 7 is the
coordinate of the proton. But f, must be the wave function of the proton. Assuming both
spins are up,

Hpypy [y >= —fT f f V(%) = %)d’%d’ 2P} () ()0} (B)py LA f2(R) | pn > = f2(R) £(R) L mp 5]

= - LV G- DAGILR) 10> - VG ~E) A /)| pn>].

In evaluating the integrals, we must choose %, and %, to coincide with 7 and # in one
order, so that % represents the location of the initial neutron. Now, noticing that
<pnlpn>=<nplnp>=1 while <pnlnp>=<nplpn>=0, we obtain

<y {Hpypy [y >= ‘fft;ffd3ﬁd37§ VUi = R)UAGY 105) LR (B + ) AR /(R) 207)]

-5 [[4%5d BV G =BVARY AR A6
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where the two terms can be combined by exchanging 7 and 5 in the second term.

This has the form of an exchange force—notice that if f, and f, are never nonzero at the
same point, then the integrand vanishes. This is why we claimed above that the shell
structure might affect the parity violating energy; a simple form with plane wave states
ignores all the structure of the nucleus.

In order to find the total energy, we must sum over all occupied proton and
neutron states f, and f, respectively. There is also a self-interaction due to #py,y in which
a nucleon changes type and then changes back. This gives an infinite contribution to the
energy. and is also more significant because a particle is certain to be at the same location
as itself, so the comment about overlap at the end of the last paragraph doesn’t apply.
We will discuss self-energy contributions at the end.

—ma |7 =7

Substituting V' (r, - 7,) = 4—‘ﬂ-l =7 ] and plane waves which are normalized so that their
nh-n
integral over the volume V of the nucleus is 1, we obtain an energy proportional to the

Fourier transform of the Yukawa potential. It is equal to

5

/x > 1 —— , and the sum over all pairs of nucleons is
2V om + k- k, |

<Hppy >=

2

/. ]

aEPV = 2 5 —1* ]
2V ik i, om, Lk =k, |

where the factor of 2 arises because the proton and neutron can be both spin up or both
spin down. Converting the sum to an integral in the usual way, we obtain

v, d*kd’k

(s Fen
(2) k|<k , ks <k, m, + | k} - kz |-

First integrate over ];2 , taking the z-axis along I;p

k,
[d*k— L 7—2thk dkf Sin6d6
m.+|k -k, | m’ +k’ +k," —2kk,cosf

Q

"l

In(m,” + k> +k,° =2k k, cos8)

=21 [ k,’dk, I
{ 2k k, ’
m, +(k +k,)’
=i [~dk,In
f’" e m,+(k, -k,
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We now integrate over the direction of 1;, , giving a factor of 4m, and then give the
expression for the integral:

2k, ok,
éEpl’s f”4ffdkdkkkl(m +(k +k))
V 167 0 0 m, +(k k)
2
L Lk, k) 4 dm (k) k) + ”]1('” +(k+k))
4 8
16.7t m, +(k -k,)? (a4)
k +k K —k
_2r;1n(kp3+k"3)arctan P "+2%(k,,3—k,,3)arctan , —k,
a m”

x Koy Lk k, (k' +k )}
“—6—"*?,," » n

The integral is evaluated by repeated integrations by parts.

We would now like to evaluate this expression as a function of x = Z/A. The
volume of a nucleus is proportional to A; that is, each nucleon occupies a fixed volume.

. . 3 . .
The volume is given by 377, A where 1, =12 fm™. As usual, the Fermi momenta are

given by k,=(37’n,)"’ where n, is the proton number density, so

= L3 x = 320Yx MeV and similarly &, = 3204T—x MeV . Furthermore, the mass
of a nucleus is roughly Amy, so

4 3
OFw __V SEn 5y OFp =(1.Ox10‘°MeV‘4)%-. (Notice that our
M  Am, V m, V
estimates, for x = 1/2, give a Fermi momentum of 250 MeV, which is somewhat small
compared to the nucleon mass, so our nonrelativistic approximations (in particular,
neglecting the time-like component of q in the derivation of the effective interaction)

seem reasonable.)

P as a function of x; it is on the order of 10 and is

The following figure shows

almost exactly equal to OF py =9x(1 - x)x107'*, which is much easier to interpret than

the formula given above; for a contact force, the number of interactions occurring in the
nucleus is proportional to the product of the densities, which is proportional to x(1-x).
(The suggested derivation of this formula—assume the mass of the pion is very large and
replace the interaction by a contact interaction—gives an incorrect answer,
30x(1-x)x107"*. The mass of the pion is not large enough to regard V,, as a contact
interaction.)
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The fraction we have just calculated is very small, and (since we can only
compare different nuclei) its variation from nucleus to nucleus is even less--2x107", if x
varies from 1/2 to 1/3. There are similar smooth empirical formulae for the total mass of
a nucleus, but the mass differences are somewhat larger from nucleus to nucleus because
the mass depends in a more jagged way on the atomic number. Thus, the plane wave
description of the protons and neutrons cannot suggest which nuclei have unusually large
or unusually small contributions from thec weak force. There are many other
contributions to the parity violating energy as well—for example, the interaction Vpepy
produces an energy shift at second order in perturbation theory. This can occur only at
second order because <il Vpepyli> vanishes—after all, li> is a parity eigenstate since the
strong forces which determine the structure of the unperturbed nucleus are parity
conserving. However, by introducing an intermediate state of opposite parity and very
similar energy, one can hope to obtain the largest possible weak parity violating

Epy =7x10", which is very

contribution to the energy. For '"F, Ref ™ estimates

similar to what we obtained above. Ref. xxvi did not calculate the matrix elements from
the theoretical formula for Vpcpy but from an experiment mentioned in Ref xxv. The
latter reference also calculated the matrix element from a theory based on exchange of
pions and other particles, giving a value which was off by only 20%.)

Ref xxvi’s calculation did not take the direct exchange of single pions in which
both the emitted and absorbed pion have parity violating interactions, leading to an
impression that only nuclei with narrowly separated partners of opposite parity have large

values of OF py

. However it leads to a very clear case in which one expects a jump in the

parity violating energy —choose a nucleus li> which is close in energy to another nucleus
li’> with the opposite parity. Fluorine is not the only choice. If one were to calculate the
matrix element of V,.py between these states theoretically (the calculation would be

similar to the above), one would find that <i | Vpcpy |§ > volume = M Thus,
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, i | Vpepy |1 3]
% _ > <7 Veepr [72] «_M . where the denominator here is just the energy
M M, -M, M,-M,
denominator (with energy replaced by mass). (M is either of the two masses.) So we
expect an especially large parity violating energy if the mass difference of the nucleus
and its excited state is small compared to the mass of the nucleus.

Finally, Ref. ™" calculates the weak-force self-energy of a proton or neutron and
finds that its fractional contribution to the mass of a nucleus is 10 times larger than the
energy from the interactions of different protons and neutrons in the nucleus calculated in
Ref. xxiv. Most likely, the parity violating self-energy of the protons and neutrons is
more significant than anything we have already calculated. This returns to one of the
most obvious models for equivalence principle violations—assume that gravity couples
differently to protons and neutrons. This gives gravitational mass differences which are
linear in x (just as we found in the model of a long range force coupled to the total
number of baryons in a nucleus). So a simple approach is to choose nuclei with the
largest and smallest possible values of x. (Hydrogen and Uranium are suggested in Ref.
xxvm!)

There are three reasons why it is unlikely that gravity couples differently to the
“parity violating part of the weak force.” First, this depends on whether one uses the
fundamental Lagrangian or the current-current Lagrangian as discussed above. In
practice, the definition of the parity violating and parity conserving energies is very
technical —a summary of the definition we used is “it is the part of the weak force which
is second order in perturbation theory.” Second, in the electroweak theory, photons are
linear combinations of a W particle and another gauge particle, so if gravity couples
differently to the W particles, it probably couples differently to the photon as well. Third,
all self-energies are infinite in any case. This is why the self-energy of the protons and
neutrons calculated in Ref. xxix is much larger than the energies of the nuclei calculated
in Ref. xxiv. The interactions of the quarks inside the protons and neutrons are larger
than the interaction energies of different protons and neutrons because the quarks are
closer together. If the quarks are point particles, then they contribute infinite self-
energies due to the weak force besides these other energies. Fourth, energy cannot be
separated into different forms of energies. For example, the energy we calculated above
includes the mass of the virtual pions, which is due to the strong force.

Addendum to Theoretical Impact Analysis

In two recent papers™* **, Damour et al., provide a theoretical justification, based on the
string theory for expecting violations of the Equivalence Principle at an accuracy above
one part in 10""* which is slightly below the present state of the art in EP tests. Their
argument centers on the inflationary rate of expansion of the early universe and on the
decoupling of scalar fields from matter during the expansion of the universe. When the
recent cstimatcs of the carly cxpansion rates are factored into the theory, they conclude
that violations of the EP may well occur at accuracy much lower than previously thought.
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The conclusion of the analysis by Damour et al. gives strength to EP experiments with
improved accuracy even if the improvement is not as dramatic as those promised by the
space-based tests (of several orders of magnitude) of the EP. Another implication is that
our goal should not be to push the accuracy as high as possible (and consequently
increase the difficulty and cost of the experiment) but rather achieve a significant
improvement in accuracy with respect to the present statc of the art.

67




CAPSULE/CRYOSTAT DESIGN APPROACH
Introductory Remarks

During the early conceptual development of this experiment, we were focusing our
attention mostly on free-fall spans of a few meters to achieve free-fall time as long as
possible. This situation, however, precluded the use of a fully cryogenic capsule because
of mass considerations and pushed us towards the adoption of a small cryostat at the top
of the vacuum chamber to refrigerate the instrument before release. However, the small
cryostat creates additional problems which are highlighted by the previous analyses as
follows: (1) the small cryostat is a concentrated mass placed very close to the detector
and, cosequently, produces relatively strong gravity gradients; and (2) the instrument
package spends most of the free-fall time in the vicinity of the small cryostat and moves
away from the small cryostat only in the later portion of the fall.
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Figure 34 Vertical motion of package relative to capsule for B, = 7000 kg//m* (shown
for distances < 1 m)

Figure 34 shows clearly that the relative distance between the instrument package and the
capsule (for a typical B, = 7000 kg/m’) is less than 10 cm during the first 14 s, increases
to about 1 m at the 24 s mark and becomes greater than 3 m at the 30 s mark (not shown
in the figure). In other words, the small cryostat can not be small because it needs to be
moved farther away for reducing the self-generated gravity gradients and also for
allowing for lateral motions of the capsule with respect to the falling package. The free
fall time (once several seconds are spent in attenuating the initial transient motion of the
sensing masses after release) affects the experiment accuracy only through its square root
(i.e., a weak function). Conscquently, it is sensible to sacrifice a few seconds of frec-fall
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time in order to make the experimental area sufficiently short to open up the option of a
fully cryogenic vacuum chamber for the detector to fall in.

These considerations are formalized in the next section by developing an optimization
process aimed at identifying the size and mass of the experimental chamber and the
capsule.

Optimization of Capsule Size and Mass

A design optimization would appear premature at this point of the flight definition study.
This optimization process, however, is aimed exclusively at evaluating in a consistent
way the size of the capsule and its overall mass. The goal of the optimization process is
to devise a mathematical formulation for evaluating capsule sizes and masses that satisfy:
(1) geometrical/dynamical constraints and (2) engineering constraints. The first category
includes the constraints determined by the strength of the gravity gradient inside the
vacuum chamber (generated by the capsule mass itself) and related to the motion of the
instrument package with respect to the capsule during free fall. The second category
includes size constraint due to transportability and handling of the capsule and also
minimum and maximum allowable mass. The minimum mass is determined by the
ability of building a vacuum chamber that does not buckle under the atmospheric
pressure while the maximum mass is limited by the carrying capacity of the balloon.

The independent variables to work with (as it will become clearer in the following) are
the (frontal) low-speed ballistic coefficient of the capsule and the free-fall time. The
output variables are the capsule diameter and related capsulc length, free-fall span,
cryostat mass, and capsule mass.

In more detail, we first need an expression of the free-fall span of the package inside the
capsule as a function of the ballistic coefficient 3, and the free-fall time T;. The free-fall
distances were derived numerically because the relevant functions are not integrable.
Consequently, we have to fit the numerically-derived function over the two parameter
space (By, T;). The fitting was done successfully over the range of interest of the
parameters by starting from the analytical formulation that approximates the solution for
a constant ballistic coefficient and then evaluating the fitting coefficients for the general
case with variable C,. The two-parameter fitting process yields:

z; = aT; exp(cT;*) /By 45)

where a = 0.149636, b = 3.084, and ¢ = 0.001692 are the fitting parameters. The results
are accurate within a few percent for ballistic coefficients varying from 2000 kg/m’ to
20000 kg/m’ and free-fall times from O to 30 s.

The free fall vertical distance readily determines the minimum length of the
experimental chamber which must at least equal the free-fall span plus the vertical size
(outer diameter) of the instrument package, that is:

Lmin = nzf + D (46)
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where D is the outer diameter of the instrument package and ) is a safety coefficient
(typically equal to 1.5) that takes into account the uncertainties in estimating the drag
deceleration due to the rarefied atmosphere.

The next step is to evaluate the minimum internal diameter of the chamber/cryostat
that can accommodate the lateral and attitude dynamic of the capsule and also provide
low values of the gravity gradients along the free-fall trajectory. In order to keep the
equations manageable we adopt for this analysis the constant stand-off distances which
were derived previously and boundary values for the capsule attitude dynamics, rather
than using an (on-line) numerical computations of the gravity-gradient field as a function
of the capsule position (as done in the previous section). The goal is to compute a
minimum value of the internal diameter and external diameter (where the two are related
through the cryostat thickness) that keep the free-falling package close to the capsule
center-line (far away from the cryostat walls) under the action of a maximum wind shear
and for reasonable assumptions about the capsule attitude (pitch or roll) dynamics during
the fall. The point above can be translated into the following equation for the external
capsule diameter:

ext
Dmin = 2()’piu‘h + Ysnear + ygg + y(‘r_\'o) (47)

Ypien = Z;8In(0,,,,) Where z is given by eqn. (45) and 0,,,, can be interpreted as either a
limit value of the maximum pitch motion of an uncontrolled capsule or a requirement
imposed on the control system of the capsule attitude during the fall. The lateral
displacement due to wind shear y,.., =f(B,, T;) is given by eqn. (10) while Yearyo 1 the
thickness of the cryostat wall of 10-15 cm (i.e., typical values for large-size helium
cryostats). The stand-off distance y,, is the upper bound of the minimum distance
between the detector CM and the heavy walls of the cryostat that defines an area
(cylindrical and centered at the cryostat center-line) where the gravity gradients generated
by the cryostat are sufficiently low. An upper bound of 0.4 m can be adopted across a
variety of cylindrical cryostats for sizes and masses of interest to this project.

One obvious consideration is that the internal diameter must be large enough to contain
the instrument package. This constraint, however, is already accounted for by the fact
that 2y,, > w, where w, is the width of the instrument package that is presently estimated
at about 40 cm. The overall length of the capsule is related to the external diameter
through the fineness ratio that, as explained previously, needs to be about 1:4 in order to
keep low the value of the drag coefficient, especially in the compressible flow regime.

The next step is to estimate the minimum mass required for the cryostat. Most of the
cryostat mass is for the metal of the vacuum chamber that has to withstand the external
atmospheric pressure (at ground level). From engineering formulas for the buckling of
cylindrical vacuum chambers we obtain that the critical thickness of the vacuum chamber
walls (at buckling) is given by:

R

1
Serit = pc(L/R) 25 (48)
092E
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where R and L are the radius and length of the vacuum chamber, s, is the (minimum)
thickness of the load-bearing shell, E is the Young’s modulus of the material and p, the
external pressure. The cryostat length is readily computed as:

L = nsz + 2ygg (49)
The minimum cryostat mass is then computed as follows:

min
M cryo — VSerit

mpD(D/k + L) (50)
where p is the density of the material, D the cryostat average diameter, v is a load safety
factor and k is a shape factor that is equal 2 for flat cryostat caps and 1 for hemispherical
caps. After adopting v = 3 and using eqn. (48) to compute the thickness, we find that
eqn. (50) provides masses which are in line with actual values of large cryostats (as
verified with Janis Research). Since the cryostat is the heaviest component of the
capsule, we can estimate the overall (minimum) mass M, of the capsule as a proportion
of the cryostat mass M = yM,,,..

The actual mass of the capsule M, however, is defined by the ballistic coefficient B,
once the external diameter of the capsule is determined as follows:

where A is the frontal area of the capsule computed through eqn. (47).

Consequently, we must verify that M > M. If the inequality is true we can simply
add ballast to the capsule in order to preserve the values of the geometrical variables and
meet the actual mass requirement. In this case, the vacuum chamber of the ballasted
capsule will satisfy the strength requirements captured by eqn. (48). If the inequality is
violated, the total mass determined by the ballistic coefficient is too small to build a
cryostat that is strong enough to withstand the atmospheric pressure. The violation of
this inequality will be dealt with in the optimization process as a (strong) penalty on the
cost function as explained later on.

Figure 35 shows an example of a contour plot of two of the key output variables, that
is, the capsule mass and the capsule external diameter vs. the low-speed ballistic
coefficient and the free-fall time for realistic values of parameters.
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Figure 35 Contour plot with grid lines showing capsule mass and external diameter vs.
low-speed ballistic coefficient and free-fall time.

The goal of the optimization process is to define the size and mass of the capsule that
minimize the value of a cost function. The cost function consists of the overall capsule
mass, the capsule diameter (which is related to the overall capsule length), and the free-
fall time. The cost function for this optimization problem can be expressed (and the
choice is not uniquely defined) as follows:

aM+a,D,,
\/ tf ~ Inin

where M and D,,, are the overall mass and external diameter of the capsule, z is the free-
fall span inside the capsule (which defines the cryostat length), t,;, the minimum desired
free-fall time, t,the free-fall time, a, and a, are weighting coefficients and P,, and P, are
penalty functions. Py is the penalty function for the total mass and Py, for the external
diameter.

CF = + By + Py with tp =ty (52)

The structure of the cost function is readily understood after considering that the
experiment accuracy depends on the square root of the integration time. The minimum
free-fall time has to include the time required to damp initial transients (a few seconds)
and also a minimum number of cycles needed for a reliable extraction of the signal from
noise. The weight cocfficients adjust the rclevant weights of the two quantities at the
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numerator by making them comparable and/or making one component more important
than the other one. By adopting meters for the units of length and metric tons for the
units of mass, the two weighting coefficients have the same order of magnitude.

Going back to the penalty functions, obviously the overall mass of the capsule must be
greater than the minimum (or critical) mass M_;, determined previously and smaller than
the maximum mass M__, than a reasonable size balloon can carry to an altitude of 40 km.
Note that M_, is a fixed value while the critical mass depends upon the optimization
parameters.

In a similar manner, the external diameter (which also determines the overall length of
the capsule according to L, = D,,/8) must be large enough to accommodate the
instrument package plus the cryostat walls (i.e., larger than D_; ) and smaller than a
maximum value D_,,. In this case both values are fixed and moreover the first inequality
(larger than) is superseded by eqn. (47) if 2y,, > Wp.

The penalty functions are bowl-shaped functions which are equal to zero for values
within the two boundaries of the inequality and whose value rapidly increases as the input
variable approaches the boundary values. Figure 36 shows the mass penalty function for
two values of M, = 0.3 ton and 1.0 ton, respectively, and M,,, = 2.2 tons. The
maximum value of the penalty function is quite arbitrary. The value simply needs to be
substantially grcater than the expected range of values of the first term that appears on the
right hand side of the cost function in eqn. (52).

Penalty function

Mass (ton)

Figure 36 Example of mass penalty function with M, = 0.3 ton and 1.0 ton, and
M,..=2.2 ton.

A similar penalty function with fixed-valued left and right boundaries was derived to
penalize the external diameter of the capsule. Without going into excessive details, the
penalty functions are obtained from a pair of exponential functions with a set of
paramecters and power exponents that shapes the function appropriately.
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Optimization Results

The optimization routine has been exercised on a large number of cases in order to
inspect the influence of any given input parameter on the output/design parameters and
the cost function. In the following we will show only the most important results relevant
to: (a) a cryostat made of Aluminum and (b) a cryostat made of Steel. The numerical
parameters adopted for computing the results shown in Figure 37 and Figure 38 are as
follows: instrument package width w;, = 40 cm; low-speed drag coefficient of the capsule
Cpo = 0.1; fineness ratio of the capsule & = 0.25; wind shear = 0.005 m-s'/m; wall
thickness of cryostat = 15 cm; stand-off distance for reducing gravity gradients Yee =40
cm; uncertainty factor on drag deceleration = 1.5; strength safety factor for vacuum
chamber v = 3; mass ratio capsule-mass/cryostat-mass y = 2; density of material p = 2800
kg/m’ (Aluminum) and 7800 kg/m® (Steel); Young’s modulus E = 80 GPa (Aluminum)
and 200 GPa (Steel). Moreover, the maximum capsule mass for a mass penalty in the cost
function is equal to M,,,, = 2200 kg. The maximum external diameter of the capsule for a
penalty is D,, = 2.2 m (which implies a maximum capsule length of 8.8 m). The weight
coefficients have been as follows: a, = 1 (mass) and a, = 1.5 (external diameter) in which
masses are expressed in metric tons and diameters in meters. More weight has been
given to the diameter rather than to the total mass because, as it will be seen later on,
there is a fairly large mass margin (large balloons can carry a few tons) while a large
external diameter leads to long capsules that are difficult to handle and transport.

The value of the cost function is shown as black contour lines in Figure 37 and Figure
38 and the contour regions are colored with the deep blue color corresponding to the
minimum of the cost function. The grid lines of the free-fall span are also added to the
figures in green color. The figures provide a host of useful information as the grid lines
specify the values of key variables such as capsule mass, external diameter, and free-fall
span (of the instrument package inside the capsule) for any point identified by the
coordinates f3, and t;. The equations shown previously enable us to compute readily other
key design parameters: the cryostat length L from eqn. (49) and its mass by dividing the
capsule mass by y.

Figure 37 shows the results for a cryostat made of Aluminum and Figure 38 for a Steel
cryostat. The cost function identifies the area on which to focus the selection of the key
design parameters. In the (desirable) deep blue area (inside the smaller circular contour
lines) the cost function is rather shallow and, consequently, the region for selecting the
design parameters is reasonably large. In the dark color region, one of the mass or
geometrical constraints has been violated and consequently the penalty functions bound
the design area. Note that the maximum capsule mass limits the design area on the
right-hand side of the plots while the (critical) cryostat mass and the maximum external
diameter of the capsule limit the design area on the left side of the plots. In the Steel-
cryostat case the (critical) cryostat mass is the leading boundary condition on the left side
of the design area. In the lower side of the plot, the design area is limited by the
minimum free fall time that has been set equal to 15 s in order to allow for a reasonable
numbers of signal cycles.
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Figure 37 Cost function in the capsule parameter space (Aluminum cryostat)

The figures show that an external diameter in the neighborhood of 1.4 m is a valid
selection for the capsule based on the assumptions of this analysis. The 1.4-m diameter
contour line cuts across the region of the minimum value of the cost function.
Furthermore, the minimum-value region is larger for an Aluminum cryostat than for a
Steel cryostat because in the latter case the boundary of the minimum (and critical)
cryostat mass encroaches into the low-valued area of the cost function. Consequently,
Aluminum is preferable to Steel, from this analysis point of view, as it allows wider
margins to work with in the capsule design. However, Steel is also a valid choice and it
might be preferable to Aluminum for the vacuum chamber because of the low outgassing.
After focusing on Figure 37, an “optimal” design choice could be an external capsule
diameter of 1.4 m (with an overall capsule length of 5.6 m). The overall capsule mass
could start at a minimum value of about a 1000 kg which provides a free fall time of 23.5
s. Note from the figures that the free-fall span contour line is about parallel to the 1.4-m
external diameter line. This situation implies that we could move the design point along
those two lines by increasing (with ballast) the capsule mass and increasing the free-fall
time. Consequently, a cryostat of given length can provide longer free fall times by
simply making the capsule heavier with ballast. The free-fall time can be increased by 1
s for every 250-kg ballast (or other equipment) added to the capsule up to the point where
the upper mass limit is reached. The low-speed ballistic coefficient (3, of the capsule will
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vary from about 6500 kg/m" for a capsule mass = 1000 kg to 13.000 kg/m" for a capsule
mass of 2000 kg.
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Figure 38 Cost function in the capsule parameter space (Steel cryostat)

The previous choice of parameters is also valid for a Steel cryostat with the only
difference that the design point for the lower value of ballistic coefficient (i.e., 6500
kg/m” which is associated with a mass of 1000 kg) is closer to the left boundary, defined
by buckling. The design point moves away from that boundary for higher values of the
low-speed ballistic coefficient.

This “design concept™ optimization does not intend to exhaust the design options for
the capsule which will have to be revisited many times before the design is frozen based
on additional system analyses. However, this process is a valid starting point to provide
preliminary numbers for the analysis to be conducted by our cryostat subcontractor. The
optimization process also provides a framework that lends itself to future refinements for
cvaluating system design parameters vis a vis performance input requirecments and
engineering constraints.
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UPDATED REFERENCE CONFIGURATION AND DrROP TIME

Capsule mass and Size

One of the important results of the analysis carried out is that the small vacuum
chamber at the top of the capsule has been eliminated in favor of a fully cryogenic
vacuum chamber (see Figure 39). The new solution eliminates the problem of the gravity
gradient produced by the small cryostat in the proximity of the detector and also provides
more clearance to the instrument package during the early stage of free fall.

Spin and release
mechanism

Instrument package
before release

Cryostat

Figure 39 Schematic of capsule with instrument package attached before release
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The new configuration also has the advantage of using a more conventional design of
the cryostat than the old reference design with the small LHe cryostat.

The preferred size of the vacuum chamber/cryostat was identified as a cylinder with
internal diameter of 1 m and an internal height (at the cylinder edges) of 2.1 m which
results in an external diameter for the capsule of about 1.4 m and a free-to-chose capsule
length of roughly 5.6 m. Preliminary data on large cryostats (from Janis Research),
indicate that the mass of a cryostat of the size considered above will fit well within the
mass limit of the system. Such chamber/cryostat will allow free fall times in the range
24-28 s depending on the amount of ballast added to the capsule.

The overall capsule mass could start at a minimum value of about a 1000 kg which
provides a free fall time of about 24 s. The free-fall time can be increased by 1 s for
every 250-kg ballast (or other equipment) added to the capsule up to the point where the a
(limit) mass of 2000 kg is reached. The low-speed ballistic coefficient B, of the capsule
will vary from about 6500 kg/m’ for a capsule mass = 1000 kg to 13,000 kg/m’® for a
capsule mass of 2000 kg. Correspondingly, the free fall time will vary from about 24 s to
28 s.

Capsule Drop Time

The free fall time of the instrument package inside the capsule was computed for several
values of the low-speed ballistic coefficient in the previous sections. Figure 40 depicts
(again) the capsule drop distance and Mach number vs. drop time.

Capsulerdrop (km:)
3

0 5 10 15 20 25 30
Time (s)

Figure 40 Capsule drop and Mach number vs. drop time
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Following the computation of the preferable range of values for the capsule mass and
size, Figure 41 shows the relative distance covered by the instrument package during free
fall with respect to the capsule for a low-speed ballistic coefficient ranging from 6500
kg/m? to 13500 kg/m’.

These results clearly indicate that a capsule of relatively compact size can provide a
free fall time between 24 s and 28 s with a capsule mass ranging from 1000 kg to 2000
kg, respectively. The higher value of the mass is for the same capsule with ballast.

Relative distance (m)

Time (s)

Figure 41 Relative vertical distance vs. free fall time for limit values of interest of
ballistic coefficient. Dots mark the expected operating points for the light capsule (M =
1000 kg) and ballasted capsule (M = 2000 kg).
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Figure 42 Relative lateral displacement due to wind shear vs. free fall time. Dots mark
the expected operating points for the light capsule (M = 1000 kg) and ballasted capsule
(M = 2000 kg).

An internal diameter of the capsule of I m was also computed from the optimization
process. This diameter determines the tolerance to wind shear acting sideways on the
capsule. Figure 42 shows the lateral displacement of the capsule with respect to the free-
falling instrument package vs. free fall time for the limit values of interest for the low-
speed ballistic coefficient. The value adopted for the wind shear of 0.005 s is equivalent
to a vertical gradient of 10 knots per km. This value is twice as high as the maximum
wind shear reported™ for the Air Force balloon base at Holloman, New Mexico. The
lateral displacements due to wind shear are relatively small in the parameter range of
interest. Furthermore, if the balloon is launched during the periodically-occurring wind
reversal times (in April-May and September-October) the vertical wind gradient is much
smaller than the value adopted for the computations shown here.
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MODAL ANALYSIS OF DETECTOR
Introduction

The following is the modal analysis of the differential accelerometer for the EP test.
The sensor is composed by two masses of different materials constrained to an external
case by means of elastic springs. The measurement is performed by monitoring the
displacement of the two masses with respect to the external case through the
measurement of capacitance variations caused by the displacement.

This analysis evaluates the eigenfrequencies and eigenmodes of the detector and the
sensitivity of the modes to variations in the detector parameters.

The model adopts six degrees of freedom, that is, one rotation and one translation for
each body. The system parameters considered for the sensitivity analysis are masses and
moments of inertia of the bodies, stiffness of the springs and their ratio.

The influence of these parameters is evaluated on both the separation of the natural
frequencies and the vibrational modes, particularly for what concerns the differential and
common modes of the detector.

Detector Dynamics Model

The detector consists of two sensing masses having their Centers of Mass (CM)
coincident with the CM of the external case. In the current detector model, one mass has
a dumbbell shape, while the other is a hollow cylinder. The shape of the flight detector
sensing masses will likely be different from this early choice. However, the shape of the
sensing masses does not affect the generality of this study. The two sensing masscs are
constrained to the case by means of elastic springs, having a pivot axis parallel to the
longitudinal axis of symmetry of the three elements. Figure 43 shows a schematic of the
sensor model.

spin axis

pivot axis

Figure 43 Schematic of detector model.
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For this analysis, we assume that the capsule containing the sensor is fixed to the
Earth surface, so that only the sensor is falling into it. This assumption does not affect the
generality of the modal analysis. The Z axis is the axis of fall and of the Earth’s gravity
acceleration.

The reference system Cf is a frame parallel to the geographic X, Y, Z axes and
displaced by the vector r, (see Figure 44). Another coordinate system D is attached to the
capsule and having axes parallel to the local normal frame. At this stage of the analysis,
reference frame D is assumed to coincide with the local normal frame and the capsule is
assumed stationary with respect to the Earth’s surface. This assumption doesn’t cause any
loss of generality for the modal analysis. The coordinate that describes the fall of the case
along the z axis is r(t), where r is the position vector that identifies the body C (external
case) with respect to the capsule and, finally, z indicates the axis of fall.

Cf reference frame

Geographic frame

Sensor case

capsule

Figure 44 Local normal (geographic) and Cf frames

The body coordinate systems x, y, z are centered at the body CM, and fixed with the
body itself. Each system has the x axis along the longitudinal axis of symmetry,
corresponding also to the spin axis while the y and z axes are radial axes rotating with the
body.

A rotational and translational degrees of freedom have been considered for each
mass. More precisely, the x rotation about the CM of each mass, and the y translation
referred to the xyz frame. Therefore each body can rotate about the x axis through its CM
and can translate along the y axis of our reference frame. Figure 45 shows the possible
movements of each body.
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Figure 45 Degrees of freedom of each body

External forces

The motion of the sensing mass consists of a rotation 6(t) about the pivot axis (related
to the torsional stiffnesses of the springs) and a translation y(t) that depends on the
flexural stiffness of the springs. The flexural stiffnesses are typically much greater than
the torsional ones. The distance d in the figure identifies the distance between the CM of
the sensing mass and the pivot axis.

The external forces are written in the Cf reference frame, and consist of elastic forces.
The elastic forces are produced by the springs connecting the sensing masses to the
external case, and consist of a torsional torque and a force. In this analysis we assume
that the rotational displacements are small, so that the displacement of the point S along
the y axis due to a rotation around the CM is simply equal to 6d [i.e., we assume that
cos(0) = 09].

The differential displacement of the point S between body A and body C and the
elastic force along the y axis are therefore:

Ay, =y -0,d, — (yc - 8cdy)
Foa= —kyA'AYA =- kyA (Ya = 0ady — Yc +0cdy)

Where y, and y,., are the displacements along the y axis with respect to the Cf frame,
0, and O, are the rotations about the x axis of masses A and C, respectively. k,, is the
flexural stiffness along y of the spring connecting body A to the case C.

The elastic torquc about the CM of A is:
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N, = ki (B,- 80) — K,y d, Ay, = —k,y (B — 8) — kyx°d, (Y2 ~ 0,d, — ye + Oc-d,)
Where k,, is the torsional stiffness of the spring connecting A and C.

Similarly, for the other two bodies we have:

Fyp = —Kyp'Ayp = Ky (Y5 — O5°dg — yc + Ocdp)

Np =k (85 — 8¢) - KydyAyg = -kig (8 — 0c) — Kyp-dp (yg — O5°dg — yc + O-dp)

Fye =-kya (Ve - Ocdy — ya + 0,°d,) — kg (¥c ~ Oc'dg — yp + 6°dy)

Ne ==k (8c—6,) ~ ks dp(yc — Bcde — ya + 0,:d,) = kip(Bg — 6c) — Kypdy(ys — 05°dg

—Yc + 6cdy)

These equations will be used in the next section to compute the stiffness matrix.

Modal Analysis

The mass and stiffness matrices are computed in this section. It has to be noted that
out of 18 degrees of freedom (DoF) associated with the translational and rotational
motion of the three masses only six of them are describing the motion of the degrees of
freedom of interest. Specifically, only the translations along the y axis and the rotations
about the x axis have to be considered for each body because the other motions do not
affect the measurement. The state vector involved is, therefore, as follows:

X=[va v yc 04 65 O¢ ]T (53)

which contains the translations along y axis and the rotations about the principal x axis of
each body.

The mass matrix is a diagonal matrix in a system of rigid bodies as follows:

my 0 0 0 0 0]
0 mg 0 0 0 0O
yo|0 0 m 0 0 0 1)
0 0 0 Iy, O O
0 0 0 0 Ig, O
(0 0 0 0 0 Iy

The stiffness matrix, obtained from the force and torque equations by using the
displacement method, is:
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kya 0 —kya —dskyp 0 dkya ]
0 ky ~kyp 0 —dgk,p dgkyg
‘. ~kys  —kyp kya + kyp dakya dgk,p ~d pky - dpkyp
“l-dakys O dakya ki + dikya 0 —kyp = d5k
0  -dgky dgk,p 0 ki + djkyp —kyp - dgk g
| dakya  dpkyp  —dpkys —dpkyg  —kis - dikya kg —dgkyg  kip+ kg +dakys+ dl23k_vB_

(55)

We can observe that for an external body that is not constrained in its free fall, two
rigid motions are possible, that is, the rigid body rotation around the x axis of the Cf
frame, and the rigid body translation along the y axis. In order to carry out an analysis of
the natural frequencies and natural modes of the system we can eliminate these two rigid
motions so as to preserve only the elastic modes. This can be done by expressing one
rotational and one translational coordinate of a body as a function of the corresponding
coordinates of the other two bodies.

A vector having the three translations equal to a constant and the three rotations equal
to zero is a solution of the eigenproblem, so that this vector is an eigenvector.
Consequently, all the others eigenvectors must be orthogonal to this onc to yield:

{®}" [MK{P}=0

where @, is a rigid eigenvector, and @ is another eigenvector. After evaluating the
matrix products we obtain:

Oy(m, P, + mg®,+ mP;) =0

where now @, is the i-th component of a general eigenvector. Because @, = fx;, where x;
is the i-th component of the vector x and f is a constant equal for all the components, we
can also write

m,y, + Mgy + mcyc =0

which allows to express one translational coordinate of a body as function of the
translations of the other two. It can also be noted that in deriving the former equation we
have obtained the conservation of the linear momentum for any elastic motion.

We can obtain similar expressions for the rotational case as follows (from now on we
drop the subscript “xx” in the moments of inertia):

[0, + ;05 +1.6.=0

We can now express the coordinates of a body as function of the analogous
coordinates of the other two bodies. We can write therefore

{x} =1CKx.}
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where x is the coordinate vector, C is a matrix, and X, is the new coordinate vector having
the two coordinates of a body expressed as function of the others. In our case, we have
eliminated the coordinates of body C, obtaining the following matrix [C]:

1 0 0 0 ]
0 1 0 0
L7, WL 0
= ™Mc mc
¢= 0 0 1 0 (56)
0 0 0 1
o o -la Iy
Ic  Ic
and the vector X, being
Ya
YB
X = 57
~la, (57
Op

The stiffness and mass matrices can be modified using the new coordinates by
(K] = [C]'[K] [C]
[M.] = [C]'[M] [C]

where M, and K, are the transformed mass and stiffness matrices which are not shown
here for the sake of brevity. The dynamical matrix [D] = [M_]"'[K,] that is needed to
compute the eigenfrequencies of the elastic modes is as follows:
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1 1 k_vAmB dAkyA(IA'*'lC) dAkvAlB
kyp| —+— A E ~Aa A C _AAR
my  mc mamp Icmy Icmy
kygma K, ( 1,1 ) dpkypla dgkyg(lp+1c)
ol —+— _ZBTyBTA _9B%hB BT IC)
mgme mg mc Icmg Icmp
D= 2 2
dpkyp(mg +me) dpk,amp (1a +1C)(krA +dAk_vA) IB(ktA + dAk_vA)
Iymc Lame I4lc Il
2 2
dgk,pmy dgkyg(mp +mc) IA(ktB + dBkyB) (Ip+ IC)(ktB + dBkyB)
Igme Igm¢ Iglc Iglc
(58)

Once solved the eigenvalue problem for the constrained system (i.e. with the previous
dynamical matrix), the total eigenvector including also the two variables eliminated can
be obtained simply premultiplying the eigenvector obtained by the matrix [C].

Eigcnvalucs and Eigenvectors.

Using the dynamical matrix evaluated beforc an analysis of the eigenvalues and
eigenvectors have been carricd out in order to evaluate the influence of parameters on the
natural frequencies and modal vectors.

The parameters are the following:

M, = mass of body A

M; = mass of body B

M, = mass of body C

I, = moment of inertia of body A about the spin axis (x axis)

Iz = moment of inertia of body B about the spin axis (x axis)

I. = moment of inertia of body C about the spin axis (X axis)

d, = distance between the CM and the constrained point of body A
d, = distance between the CM and the constrained point of body B
k,, = torsional stiffness of spring connecting bodies A and C

kg = torsional stiffness of spring connecting bodies B and C

k,, = bending stiffness of spring connecting bodies A and C

k,p = bending stiffness of spring connecting bodies B and C

87




Numerical values have been assigned to these parameters to evaluate natural
frequencies and eigenvectors. Subsequently, the values of key parameters have been
changed while keeping the others constant.

The values used for the first evaluation are as follows:
m, =mg =5kg

I, = Iz = 0.009 kg-m® (which corresponds to an external radius of body A of 0.06 m
and a mass m,)

IC = l kg'l’r’;2
d,=d;=006m

ks =k = 9.593 Nm/rad (corresponding to a first torsional frequency for a single-
degree-of-freedom system of 3 Hz)

k,, =k, = 18000 n° N/m (corresponding to a first lateral frequency for a single-
degree-of-freedom system of 30 Hz)

Using these values we obtain the following values:
f, =2.99 Hz, f,=329Hz

f;=52.13 Hz; f,=5522Hz

and the associated eigenvectors:

v, ={0.0427736,-0.0427736, 0.705812, -0.705812}
v, = {0.0326524,0.0326524, 0.706352,0.706352}
v; ={-0.0209932,0.0209932, 0.706795, -0.706795}
v, ={-0.0210127,-0.0210127, 0.706795, 0.706795}

Remembering that the eigenvector components represent in order y,, yg, 0,, 05, we
can make a few considerations about the natural modes.

The first vector is composed of a translation of the masses and a rotation about the
CM. The sign is opposite for the two masses, so that one moves in opposition to the
other while the signs of y, and 8, are the same so that the pivot point tends to remain in
its original position. In the first mode body C is at rest, the motion being auto-
compensating. In summary, the first mode corresponds to a differential mode of the two
test masses.
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Figure 46 First natural mode (differential)

The second vibrational mode has a similar type of motion, the only difference being
that the two proof masses move in the same direction. In this mode body C moves in the
opposite direction of the proof masses in order to equilibrate thc motion.

Figure 47 Second natural mode (common)

The third and fourth modes involve the lateral stiffness of the springs as the sign of
the rotation and translation of each mass is now opposite, so that the displacement of the
constrained point is now the sum of the y translation and of 6d, term (i.e., y, — 8,d,). The
y translation depends on the lateral stiffness of the springs that is much higher than the
torsional stiffness. The first two modes are analyzed in detail in the following.
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Parametric Analysis
K, influence

The following plots show the variation of the first and second natural frequencies as
k, varies. In each plot the components of the eigenvector is also plotted.
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Figure 48 Dependence of first natural frequency on k,
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Figure 49 Dependence of second natural frequency on k,
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In the previous plots we can notice that the natural frequencies increase with k,
having as asymptotes 2.99 and 3.29 Hz respectively. Increasing the value of k, therefore
contributes to separating the two frequencies up to the value of 0.3 Hz. The following
plot shows the influence of k, on the displacement of the constrained point.
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Figure 50 Dependence on k, of translation of constrained point in first mode
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Figure 51 Dependence on k, of translation of constrained point in second mode

As Kk, increases, the displacement of the point S (constrained point) decreases, so that
the differential displacement in mode 1 is reduced and likewise for mode 2 (see Figs 50
and 51).
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I influence
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Figure 53 Dependence of second natural frequency on I

The value of I affects the frequency of the second mode; decreasing the value of I.
the natural frequency increases, yielding also a larger separation between the two first
frequencies. I has no influence on the displacement of the pivot point.
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mc influence

The effect of m. on the frequencies considered is to increase the separation of the
frequencies as mc decreases, similarly to the effect of I.. The plot below shows this effect
versus the me/m, ratio.
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Figure 54 Dependence of natural frequency separation on m¢/m,

Combining the effect of I and m, the separation of the frequencies increases from a
value of 0.3 Hz when I and m, are much greater than I, and m,, to a value of 2.17 Hz
when the ratios I/I, approaches unity.

Relative variation of 1,, m,, k4, k4

We perturb the values of the parameters k4. I,, ks, d,, m, of the two sensing masses
in order to test the influence of possible imperfections in the mechanical and physical
characteristics of the sensing masses and springs. The ratios p,/pg, where “p” indicates
one of the above mentioned parameters have been varied between +5% of the nominal

value.

The main influence of these parameters is on the difference of displacement of the
two sensing masses in the common mode (mode 2), resulting in a differential
displacement. The plot below shows the differential displacement (y, -yg)/y, versus the
pA/pg ratio.
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Figure 55 Influence of bodies A and B parameter’s ratio on the differential displacement

As it can be seen, the most influent parameter is the distance of the constrained point,
and subsequently the mass, and inertia ratio. This kind of dependence is explained by the
fact that d, changes the moment of inertia around the pivot axis with a squared
dependence; m, influences both the translational and the rotational motion, while 1,
affects only the rotational degrees of freedom (DoF).

Concluding Remarks

The analysis performed allowed to describe the differential accelerometer’s modes
and frequencies and their dependence on the inertial and mechanical parameters. The
system has been modeled using 6 DoF, the rotation around the x axis and the translation
along a radial axis for each body.

The first two frequencies and eigenvectors have been analyzed in detail because these
modes of rotation around the pivot axis affect the acceleration measurement the most.
The separation of these two frequencies depends mostly on the mass and inertia moment
of the C body, and slightly on the lateral stiffness of the springs. The lower C mass and
inertia are, the greater the separation between the first two frequencies (if I./1, = 1 =
m¢/m, the difference is 2.17 Hz for a value of k, = 18000x° , while it is only 0.3 Hz if
Ic/1, = 110 and m¢/m, = 6). Increasing k, contributes to reducing the displacement of the
pivot axis both for mode 1 and mode 2.

A variation of the parameters ratio between body A and B has also been checked, to
evaluate the influence of possible imperfections of the inertial and mechanical
characteristics of the proof masses.
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The differential displacement of the CM of the sensing masses has been analyzed.
The k. /k ratio has the greatest influence, causing a Ay difference of 5% as the previous
ratio varies by 0.7%. The k,,/kg ratio has a similar influence. The ratio m,/my has
roughly half the influence of the spring stiffness ratio, causing a 5% Ay difference as the
ratio varies by 1.3%. The inertia ratio I,/ produces a 5% variation of the Ay differcntial
displacement as it varies by 2% from the unit value. Finally the lateral stiffness ratio
k,/k,s has a negligible influence compared to the others, i.c., approximately two orders
of magnitude less, reaching a 0.025% variation of Ay as the parameter ratio varies by 1%.
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DYNAMICS ANALYSIS OF INSTRUMENT PACKAGE/DETECTOR
Introduction

The following analysis is a study of the accelerometer and instrument package
dynamics. Two different designs of sensor have been taken into consideration as follows:
(1) a sensor with two sensing masses and a case (three bodies); and (2) a sensor with one
sensing mass (made of two different materials) and a case. In both types the measurement
is carried out by monitoring the differential displacements between masses, through the
measurement of capacitance variations caused by those displacements.

In this study we derive the differential equations of motion for each sensor and carry
out numerical integrations of cases of interest, starting from different initial conditions of
the positions of the centers of mass (CM) and initial rotational velocities of the bodies in
order to evaluate the influence of those parameters on the differential output of the
accelerometer.

Each body is defined using all its six degrees of freedom (DoF) and elastic forces and
torques are applied to each of them at the attachment points of the constraining springs.

Description of sensor configurations

Three-body sensor.

The sensor is composed by two sensing masses having the CM coincident with the
CM of the external case. One mass has a dumbbell shape, while the other is a hollow
cylinder. These two masses are attached to the case by means of elastic springs, having a
pivot axis that is parallel to the longitudinal axis of symmetry of the sensor. All the
bodies spin about the symmetry axis x (during the fall). Figure 56 shows a schematic of
the 3-body sensor.

X spin axis

pivot axis

Figure 56 Schematic of three-body sensor
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The motion of the sensor is essentially a rotation of the sensing masses about the
pivot axis. The translational motion of the sensing masses, which depends on the high
lateral stiffness of the springs is much smaller than the rotational motion. A rotation of
the mass implies a variation of the distance between the sensing mass and the external
case that changes the capacitance of the motion pickup system.

Two-body sensor.

The two bodies sensor consists of an external case (body A) and an internal sensing
mass. The internal mass is actually formed by two equal masses of different materials
which are rigidly attached so as to behave like a single rigid body. The internal mass is
connected to the external mass by means of elastic springs which have a lateral stiffness
much higher than the torsional one. All the bodies spin about the symmetry axis x
(during the fall).

Z Pickup plates of capacitor

spin axis

| . .
i Pivot axis

Figure 57 Schematic of two-body sensor

A violation of the EP during the fall would cause a rotation about the pivot axis of the
sensing mass with respect to the sensor case. The measurement is then carried out by
detecting the differential displacement (and therefore the capacitance variation) of the
central disk of body B with respect to the four fixed capacitor plates attached to body A
(see Figure 57). The capacitor plates are arranged in such a way that a rotation of B
about the pivot axis z unbalances the capacitive measurement bridge and produce an
output signal.

Reference frames

A body reference frame has been attached to each body. The attitude of each body is
identified by Euler’s angles, following the sequence 1-2-3 (i.e., by building the rotation
matrix using sequential rotations about x, y, and z axes).
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The relationships between the different reference frames have been written by means
of rotation matrices and translation vectors. All the matrices are described in details in the

following. The Ry, matrix transforms the inertial frame (X,, Y,. Z,) into the body A
reference frame (X,, Y,,Z,);

Figure 58 Inertial and body reference frames

The body frame is attached to the geometrical center of the body which, in ideal
conditions, coincides with the CM of the body. The position of the CM (of body A for
example) in the A reference frame is defined by {Xcmas Yemas Zemad. The coordinates of
the origin of the A frame (R,) with respect to the inertial O frame are: {x,(t), yA(t), Z,(1)}.

The matrix yielding the transformation from system X, Y,, Z, to X,, Y,, Z, is
composed by the following sequencc of transformations:

- rotation 8, ,(t) around X axis;

- rotation 0, ,(t) around Y axis (transformed Y, axis after 8_,(t) rotation);

- rotation 0,,(t) around Z’ axis (transformed Z, axis after 0, ,(t) and 0,4(t) rotations);
- translation R, projected along the three axes X,,, Y,.Z,.

The rotation matrix [R,,] and the translation vector {R,} from system O (inertial) to
system A (body A) are the following:
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c(0,4)c(0,4)  c(8,4)5(8,4)5(0y0) + c(0,4)5(0,4)  —c(6,4)c(0:4)5(0,4) + 5(6,:4)5(64)
[ROA]= —C(OyA)S(ezA) C(ng )C(BZA)—S(BXA)S(B)/A)S(HZA) C(BZA)S(QXA)+C(GXA)S(6yA )S(BZA)
50,4) —e(B,1)5(0,4) c(B,0)c(0,4)

where the superscript identifies the relevant reference frame. The translation vector is the
R, vector, expressed in the A frame. This vector can be computed as follows:

R, =[Ro{-x4 -¥ya ‘ZA}T

Where the vector {-X,, -Ya, -Z5} is the opposite of the vector {R,} expressed in the 0
frame.

We have:

=c(6,4)c(B,4)x4 —[c(04)5(8,4)5(0,4) + €(6,4)5(0 )]y 4 +[c(0:4)c(0:4)5(6,4) ~ 5(6,4)5(0.4))z4
{RAA} =1 ¢(0,4)5(0.4)x4 = [c(0,)c(04) = 5(6,4)5(0,)5(00)1y 4 = [€(0:4)5(04) + (0.:4)5(0,4)5(6:4) )24
=5(0,4)% 4 +¢(0,4)5(0,4) ¥4 —c(04)(0,4)2p

For the opposite transformation, which leads from the body A coordinate system to
the inertial frame, we use the transpose of the rotation matrix [R,,] = [Roal" and the
vector is simply the R, vector expressed in the inertial coordinates {X,, ¥4, ZA}-

We have

c(6,4)c(6,4) (0,4 )s(6,4) 5(0y4)
[Rao]=| c(B4)5(6,4) +(B,4)5(6,4)5(0,4)  (B:0)c(B4) = 5(8,:4)5(6,4)5(64)  =c(6,4)5(6:4)
~(0,4)c(0)5(0,4) + 5(0,0)8(0_4)  c(0:4)5(0,4)5(By4) + c(B0)5(0:4)  €(B;4)c(B4)

XA
{Rg} =1Ya
2A
In summary, the transformations are as follows:
Inertial to body A:
[Roal 4"} + {R,"}
Body to inertial:
[Ru)- {r*} + {R,"}
The same procedure is followed for the other bodies.
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Degrees of Freedom and equations of motion

The transformation matrices have been written for each body for deriving the
equation of motion for the different bodies. The body coordinate systems are centered in
the body’s geometrical center, and fixed with the body itself. The position of the CM is
described using three coordinates (Xcya, Yema» Zowa for body A). Each system has the x
axis along the longitudinal axis of symmetry, corresponding also to the spin axis, the y
and z axes are radial axes rotating with the body.

Each body has all the six degrees of freedom, i.e., the three translations of the body
frame origin, and the three rotations according to the Euler’s angles described above.

To derive the equations of motion the translation accelerations of the CM and elastic
forces have been written in the inertial system. The rotational equations are then
projected onto the body axes.

Translational accelerations

In the following we describe the procedure for deriving the equations of motion by
taking the two-body sensor as an example. The procedure to derive the equations for the
three-body sensor is exactly the same with the added complexity of a higher number of
equations.

The CM vector in each body’s reference frame is:
Body A:  {r,} = {Xcma Yoma Zewal'

Body B: {13} = {Xcmp Yoms ZCMB}T

The translational acceleration expressed in the inertial reference is obtained using the
formula:

{as}= [R(AO] {ra}+ Z[R’Ao]' {r}+[Rao] {m}+ {Rﬁ}

Where

{a,} is the acceleration of body A in the inertial frame;

[R,o] is the rotation matrix from A to inertial frame;

{r,} is the coordinates vector of body A CM in the A frame;

{R,"} is the translation vector expressed in inertial coordinates

() indicates the time derivative and the dot (.) matrix mulitiplication.

The same equations are used for the other bodies.
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Elastic Forces

To evaluate the elastic forces we define first the points where the springs arc attached
to each body. The position of these points are expressed in body frame. The distance
between connected points is then computed from the actual position during the motion,
projected in the A frame, and multiplied by the stiffness vector {k,,, ky4, k,,}. By
following this procedure, it is possible to assign different stiffness to each degree of
freedom. Finally the elastic forces are projected onto the inertial coordinate system, and
added to the equation of motion. The points connected by the springs are as follows (all
distances are in meters):

{pa} ={0,0,-75x107}"

{pa2} ={0,0,75x107}"

{ps:} ={0,0,-65x107}"

{ps>} ={0,0,65x107}"

The initial lengths of the two springs constraining the motion are as follows:
{1} = {pai — s} = {0, 0,-10x107}'

{1,} = {Pa>— a2} = {0,0,10x107}

The figure below shows the position of the points where the forces are applied

Point A1

Point B2 .
Point B1

Figure 59 Locations of attachment points
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{Fy) = Ruo] - (K1 . ({Par} = [Tonl {TaoPur} - {11
{Fou} = [Ryo] . (IK] . ({Pa2} ~ [TOA]-{TB()'pBZ} -{L}))
{(F=1{F.\} + {For)

In the above notation the operator “T,,.x” indicates the combination of the
multiplication by the rotation matrix [R,,] applied to the vector {x} plus the translation of
the vector {R,*} which yields:

{Toax} = [Rpa] {x} + {RAA}

The expression T, (Tg,.pg;) projects the coordinates of the point pg, (expressed in the
body B frame) onto the body A coordinate system. Subsequently, the force is projected
onto the inertial frame using the [R,,] matrix. A similar procedure is used to evaluate the
forces acting on any other body pairs.

The equations of translational motion for the two bodies A and B are:
m, {a,} -{F,}=0
mg {ag} - {F3} =0

where m, and m,, are the masses of body A and B, a, and aj are the accelerations, and F,
and Fj, are the elastic forces:

{Fa} ={F s} + {F:x}
{Fp} = {Fg} + {Fy}.
Rotational accelerations:

The angular velocity of each body is computed by using the rotation matrices that
transform the coordinate system from the inertial to the body frame and conversely for
the opposite transformation. The rotational velocity matrices of bodies A and B are
derived by using the Cartan’s formula as follows:

[wa]=[Roa]- [RAO]
[wp]=[Roz]’ [RBO]

where [R,,] and [R,,] are the rotation matrices from coordinate system O to A and vice-
versa. [Rgg] and [Rg] are the correspondent matrices for body B.

It should be notcd that the former expression lead to the skew symmetric matrix of
the angular velocity from which the components of the angular velocity vector {w,} can
be recadily extracted.

102



The rotational inertia forces are obtained using the formulas:

[1a]-na} +[0a ][] s}

[75]{@s} +[wp] (1] {ws}

Where {®,} and [w,] represent the angular velocity vector and matrix, respectively,

for body A (and similarly for body B), [1,] and [I;] are the inertia matrices for body A
and B which, assuming principal axes, have the form

Iy O 0 Ig.., O 0
[1a]=| 0 Iay O [g]=| O Ip, O
0 0 IA:: 0 0 1 Bzz

Elastic torques

The elastic torques acting on cach body arc computed by using the definition of the
attachment points and the expression of the elastic forces prcviously defined. The
expressions of the torques in the body reference frame are as follows:

{Ta} ={Par} X ([Roal . {F14}) + {pas} X ([Rps] . {F24})

{Ts} = {Pei} X ([Rop] {Fi5}) + {Ps2} X ([Reg] - {F2s})

where X indicates the external product of vectors.

Finally, the expressions of the rotational equations of motion are:
[1a]-{ea} +[@a]-[1a] {wa} - {Tu} =0

[15]-{ws} +[wp] [15]-{ws} -{Tz} =0

The equations of motion for the three bodies sensor are evaluated at the same way as
for the two bodies. The same quantities are derived and the same structure for the

equations is obtained. Figure 60 shows the positions of the constrained points for the
three bodies sensor.

(59)

The points pca;» Peazs Pep: and Peg, are the points of the external case C connected
with the points p,,, Pas» Ps1» Ps2» Fespectively. In this case four springs are used to connect
the two bodies to the case (two springs per each body).
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Figure 60 Locations of attachment points

The coordinates of the points are the following (each point is expressed in its own
body system):

{pai} = {-40x107, -60x10", 0}"
{Ps:} = {-250x107?, -60x107, 0}"
{pcar} = {-50x107*, -60x10*, 0}"
{Pcs:} = {-270x107, -60x 107, 0}"
{ar} = {Pari — Pcar}

Usi} = {Ps1 = Pcei}

{pa:} = {40x107,-60x107,0}"
{ps:} = {250x107%, -60x107, 0}"
{Pcai} = {50x107,-60x107,0}"

{pcg1} = {270x 107, -60x107, 0}

{12} ={Pa> — Pcaz}
{lg2} = {Ps> — Pcp2}
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Two Bodies

The integration of the equations of motion has been performed using different values for
the CM position and initial angular velocity of body A.

A frequency analysis has been performed for each result, to evaluate the frequency
content of the differential rotation around the z axis, which leads to the detection of a
differential signal by the capacitors.

The parameters in the equations are the following:

m, = mass of body A

mg = mass of body B

1, = moment of inertia of body A about the x axis

L, = moment of inertia of body A about the y axis

1,, = moment of inertia of body A about the z axis

Ig, = moment of inertia of body B about the x axis

Ig, = moment of inertia of body B about the y axis

Ig, = moment of incrtia of body B about the z axis

k, lateral stiffness of spring connecting bodics A and B (in A coordinates)

lateral stiffness of spring connecting bodics A and B (in A coordinates)
. lateral stiffness of spring connecting bodies A and B (in A coordinates)
Ky, = torsional stiffness of spring connecting bodies A and B

Xema = X position of CM of body A (in body A coordinates)

Yema =Y position of CM of body A (in body A coordinates)

Zema = z position of CM of body A (in body A coordinates)

Xemp = X position of CM of body B (in body B coordinates)

Yems =Y position of CM of body B (in body B coordinates)

Zews = Z position of CM of body B (in body B coordinates)

-
[ T [ [

The variables for the equations (DoF) are:

x,(t) = x coordinate of the geometrical center of body A (in inertial coordinates)
y.(t) =Yy coordinate of the geometrical center of body A (in inertial coordinates)
z,(t) =z coordinate of the geometrical center of body A (in inertial coordinates)
xg(t) = x coordinate of the geometrical center of body B (in inertial coordinates)
yp(t) =y coordinate of the geometrical center of body B (in inertial coordinates)
zx(t) =z coordinate of the geometrical center of body B (in inertial coordinates)

0,.(t) = xrotation of body A
0,,(1) =y rotation of body A
0,,(t) = zrotation of body A
0,5(t) = xrotation of body A
B,5(t) =y rotation of body A
0,5(t) = zrotation of body A

Numerical values have been assigned to the parameters and then a study of the influence
of the position of the CM with respect to the geometrical center of each body (CM
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parameters), also combined with an initial angular velocity of body B. The values used
for the fixed parameters are in the following.

We analyze in the following representative cases with prograde precession (i.e., ICx >
ICy). The reason for favoring prograde precession over retrograde precession is that
prograde precession brings about significantly smaller accelerations due to imperfect
release (see later on) than retrograde precession.

Tweo-Body Dynamics Simulation
Prograde precession
IAx < 1Ay

mA =30kg, mB =1 kg,

IAx = 95/100 kgm’, IAy = 146/100 kgm?, 1Az = 146/100 kgm’,
IBx = 17/100, IBy = 17/100, IBz = 17/100,

kx = 45000 N/m, ky -> 35000 N/m, kz -> 35000 N/m,

kx2 = 45000 N/m, ky2 = 35000 N/m, kz2 = 35000 N/m,

kBx = 1000 Nm/rad, kBy = 1000 Nm/rad, k0z = 54 Nm/rad;

spin frequency = 0.3 Hz
initial velocity 0, of body A = 107 rad/s
initial nutation angle =0

xCMA =0,yCMA =0,zCMA =0,
XCMB = 10° m, yCMB = 0,zCMB = 10° m

¢ 2.99716 1
7.38688
8.08957
42. 8045
42. 8045

. 48. 63567 )

Figure 61 Natural frequencies
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Figure 63 FFT of 8,, vs. frequency (Hz)
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Figure 65 FFT of 0,5 vs. frequency (Hz)

108



0.0004

0.0002

-0.0002

-0.0004 |

Figure 66 0, - 0,, (rad) vs. time (s)

0.00035}
0.0003¢
0.00025¢
0.0002¢
0.00015
0.0001¢

0.00005} k\_
" -

Figure 67 FFT of 0, - 0,, vs. frequency (Hz)

0.000027¢
0.000015}
0.00001¢
Spin frequency

Sx107%t

0.1 0.2 0.3 0.4 0.5
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Three-Body Dynamics Simulations
The parameters in the equations are as follows:
m, = mass of body A

mg = mass of body B
m: = mass of body C

1., = moment of inertia of body A about the x axis

I, = moment of inertia of body A about the y axis

I, = moment of inertia of body A about the z axis

Is, = moment of inertia of body B about the x axis

Iy, = moment of inertia of body B about the y axis

Iy, = moment of inertia of body B about the z axis

I, = moment of inertia of body C about the x axis

Ie, = moment of inertia of body C about the y axis

I, = moment of inertia of body C about the z axis

ka, = lateral stiffness of spring connecting bodies A and C (in C coordinates)
Kay = lateral stiffness of spring connecting bodies A and C (in C coordinates)
ki, = lateral stiffness of spring connecting bodies A and C (in C coordinates)
Kg, = lateral stiffness of spring connecting bodies B and C (in C coordinates)
kg, = lateral stiffness of spring connecting bodies B and C (in C coordinates)
kg, = lateral stiffness of spring connecting bodies B and C (in C coordinates)
Koa = torsional stiffness of spring connecting bodies A and C

kg, = torsional stiffness of spring connecting bodies B and C

Xcma = X position of CM of body A (in body A coordinates)
Yema =Y position of CM of body A (in body A coordinates)
Zema =z position of CM of body A (in body A coordinates)
Xeme = X position of CM of body B (in body B coordinates)
Yeme =Y position of CM of body B (in body B coordinates)
Zcyp  Z position of CM of body B (in body B coordinates)
Xeme X position of CM of body C (in body C coordinates)
Yeme Y position of CM of body C (in body C coordinates)
Zeye  z position of CM of body C (in body C coordinates)

The variables for the equations (dof) are:

Xa(t) = x coordinate of the geometrical center of body A (in inertial coordinates)
ya(t) =Yy coordinate of the geometrical center of body A (in inertial coordinates)
z,(t) =z coordinate of the geometrical center of body A (in inertial coordinates)
Xg(t) = x coordinate of the geometrical center of body B (in inertial coordinates)
ys(t) =y coordinate of the geometrical center of body B (in inertial coordinates)
zy(t) =z coordinate of the geometrical center of body B (in inertial coordinates)

Xc(t) = x coordinate of the geometrical center of body C (in inertial coordinates)
Yco(t) =Yy coordinate of the geometrical center of body C (in inertial coordinates)
z(t) =z coordinate of the geometrical center of body C (in inertial coordinates)

0,.(t) = x rotation of body A
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0,,(t) =y rotation of body A
0,,(t) =z rotation of body A
0,5(t) = x rotation of body A
0,5(t) =y rotation of body A
0,5(t) =z rotation of body A
0,.(t) = zrotation of body C
0,o(t) = x rotation of body C
8,c(t) =y rotation of body C

Prograde precession

ICx <ICy
spin freq = 0.3 Hz

values:

mA =1 kg, mB =1 kg, mC =30 kg,

1Ax = 17/100 kgm?, 1Ay = 17/100 kgm?, 1Az = 17/100 kgm®,

IBx = 17/100 kgm?, IBy = 17/100 kgm?, IBz = 17/100 kgm”,

ICx = 95/100 kgm?, ICy = 146/100 kgm?, ICz = 146/100 kgm®,

kA 1x = 45000 N/m, kA ly = 35000 N/m, kA1z = 35000 N/m,

kA2x = 45000 N/m, kA2y = 35000 N/m, kA2z = 35000 N/m,

kAgx = 61.68 Nm/rad, kAqy = 1000 Nm/rad, kAqz = 1000 Nm/rad,
kB1x = 45000 N/m, kB1y = 35000 N/m, kB1z = 35000 N/m,

kB2x = 45000 N/m, kB2y = 35000 N/m, kB2z = 35000 N/m.

kBOx = 6168/100 Nm/rad, kBOy = 1000 Nm/rad, kB8z = 1000 Nm/rad

initial 6, of body C = 107 rad/s
Initial nutation angle =0

XxCMA =10° m, yCMA =0,zCMA = 10 m,

xCMB =0, yCMB =0,zCMB =0,
xCMC =0,yCMC =0,zCMC =0
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Figure 69 Natural frequencies

The simulations have been run for 100 s (which is higher than the actual value) for
the sole reason of providing a good frequency resolution for the FFT plots.
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Figure 70 z, - z. (m) projected in body C frame vs. time (s)
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Figure 72 Zoom of z, - z. FFT vs. frequency (Hz)
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Figure 73 z; - z. (m) in C frame vs. time (s)
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Figure 74 FFT of z; vs. frequency (Hz)
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Concluding Remarks

The analysis carried out allowed to evaluate the influence of CM position and initial
angular velocity errors in the dynamic of the 2-body and the 3-body sensors. The two
systems have been modeled using 12 DoF, and 18 DoF respectively (six dof for each
body).

2-body results

The position of the CM for body A (external case) did not affect the rotation about the z
axis (measurement axis), while the initial non zero condition on the angular velocity of
the same body caused a differential signal to be detected.

Analyzing the frequency content of the signal, though, no frequency peak was noticed at
the spin frequency (0.3 Hz), while the natural frequency for the rotation about the z axis
(3 Hz) and the precession frequency (0.18 Hz) were present.

These frequencies can easily be changed modifying the torsional stiffness about z axis
and changing the inertia ratio (IAz — 1Ax)/IAz, to which the precession frequency is
directly related.

Note that the spin frequency appears in the single 6,, or 6, starting from an initial
angular velocity of body A about y or z axes, but it is rejected when the difference
between the two signals is taken.

Applying all the initial conditions together (both CM positions and angular velocities) led
to analogous results, resulting in a rejection of the spin frequency in the differential
rotation.

3-body results

Likewise, in the three-body detector the position of the CM of the external case (body C)
along the spin axis does not influence any of the variables (in the absence of gravity
gradients). The displacement of the CM along the axes y and z cause the excitation of the
y and z variables only, while the rotations are not affected. Moreover the differential
displacement is not excited.

An initial condition on the angular velocity (both along the y or z directions) excites all
the dof of the system, both individual and differential; the frequency pattern of the
variables doesn’t show evidence of peaks at the spin frequency, neither in the individual,
nor in the differential component of the displacements.

After applying all the different conditions together, the frequency analysis again shows
that the differential signal (along z direction) doesn’t show any peak at the spin
frequency, even if these peaks are present in the individual variables (y and z) due to
initial displacement of the CM of body C along y and/or z directions.
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DETECTOR REQUIREMENTS DEVELOPMENT
Model for the Gravitational Perturbations Acting on Proof Masses
Overview

The test body (proof mass), falling inside the capsule, is subjected to non-negligible
gravitational attraction by the capsule. In particular, the higher order gravitational
potential plays a major role because of the elimination of the zero-order potential due to
the equivalence principle.

The model consists of a spinning test body inside a capsule: hollow cylinder covered with
flat caps. The test body is released at the axis of the cylinder, and deviates from the axis
during its fall. Therefore, our task is to compute the gravitational force and torque acting
at the neighborhood of the fall. The fact that both the test mass and the capsule are closed
finite bodies, increases the complexity of the problem. We took advantage of the size of
the test mass; smaller than the cylinder radius, to derive an asymptotic analytical solution.
We arc mostly concerned with the force/torque at the modulation frequency. In other
words, our model should evaluate the force/torque in a rotating body frame, rather than
the static field in the capsule frame of reference. For that purpose we built a semi-
analytical model. The main advantage of our model is its flexibility. It can handle any
configuration of test mass as well as any additional mass distribution in the test chamber.

The purpose of this work is two folds. We need a working gravitational model for future
simulation for the dynamics of the test body. We also need to choose the inertia
properties of the test body that minimize the gravitational disturbance.

In the following we presents the analytical approach, analytical results, numerical
analyses, and the interpretation of results. Appendices to this section are available in the
first Annual Report #2™ for this grant. Appendix A explains the computer code.
Appendix B and C present analytical solutions for the gravitational attraction due to the
cylinder and the caps, and check the validity of our numerical model. Appendix D
proposes an approximation of the gravitational field and its gradient by using radial basis
functions.

General Approach

The purpose of this work is to model and analyze the gravitational attraction between
the capsule and the test body. There are at least three ways to approach this problem. The
first approach is to compute the force between each capsule mass element and a test body
mass element, and to perform a double summation on these forces. If N is the number of

capsule mass elements, and N is the number of test body mass elements, then the

cardinality of the computation is N ® N (the complexity of the computation is the

product of the complexity of a single element computation by the cardinality). The
second approach is a double integration over the bodies. The drawback of the first
approach is the heavy computational cffort, especially if we need, in the future, an online
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computation in a dynamical process. The weakness of the second approach is in the
cumbersome analytical computation. Moreover, the integration will result in an
asymptotic series of complicated functions. This will require intense computation. In
addition, asymptotic series introduce a truncation error into the computation. We adopted
a third approach for this model.

Our computational approach is to consider the capsule as a discrete ensemble of
lumped mass, where the resultant force and torque acting on the test body are the
cumulative force and torque due to each capsule mass element while the test body is
terated with a series expansion. In other words, the interaction is between a finite body
and a point mass. This approach is a tradeoff between the previous approaches, its
cardinality is N . The main advantage is the flexibility in modeling any capsule shape,
according to future requirements.

The purpose of the following computation is to come up with simple closed-form
analytical expressions, for the force and torque acting on the spinning test mass due to the
capsule gravitational attraction.

Gravitational Model

The gravitational potential for finite size bodies is:

M

Where in our case Ry is the test mass (proof mass), and R, represents the attracting
bodies, like the capsule (cylinder and caps) and the Earth.

For the purpose of simplicity we will proceed with a representation of the test body,
and a single element of the attracting mass, M;.

The gravitational potential at a representative element mass M; due to the test body

is: V(M i) =-GM ; f ,where 7 is the radius vector between an element mass

MB r

of the test body and dM ,as shown in Figure 78.
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Figure 78 Gravitation model for test mass and outer attracting bodies

Assuming a sufficient discretization, the total force acting on the test body due to all

. N
outer mass elements is: Fz = Y VV(M;), where N is the number of outer mass elements.
i=1

The model utilizes two coordinate systems. The first is the capsule frame, denoted by:
{X,Y,Z}. X,Yare so far arbitrary, while Z coincides with the symmetry axis of the

main cylinder. The test body frame, denoted by{x, y,z} , is attached to the test mass. So

far, the origin and the orientation of the coordinate system are arbitrary. The gravitational
potential will be expressed in body frame. The inertia coefficients of the body are

constants in this frame.

R - p . and to expand the potential by
P

Rp

The analytical procedure is to express FasF
n

=T

he followi es: ~ == 3 (2] A
the tollowing power series: - §n=0 R n

Here P is the Legendre polynomial of degree 7.

n
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The derivation consists of the following steps. Substituting the inverse radius
approximation into the potential, carrying out the integration, while expressing vectors in

body frame, as follows. R=(le, +meé, +né,)R and p=uxe,+ yey +ze;, where
{e, e, e.} are body unit directions, and /, m. n are direction cosines between R and the

body axes. The resulting potential is a summation over all mass elements M;:

GM M _ GM M~
R R2

[[X+m¥+nZ]

N
V= 3{-

i=1

-%[(312 “ DI + Gm® =Dy +Gn® =Dz +6(ImI gy + Ind gz +mnd )]

GMy <2 2 2
_.2?1'_[1(51 -3 xx + m(Sm —3)Jyyy+n(5n -3)J
2 2 2
+3m(51 —l)Jxxy+3n(51 =D Jxxz +31(5m -l)Jx\,y
2 2 2
+3n(5m —1)Jyyz+3l(5n =D xzz +3m(Sn” -DI ..
1
+6Ianxyz]+O(—R—5-)}

where jx pyq,rare the inertia integrals defined as:

. r
Jopagr= [xPyiz" dm
xXEy*Z
- MB

For the second order, it is common to use the moment of inertia. The following
relations relate them to the inertia integrals:

1
Tae =5y + 1 -1

1
Jyy = E(Ixx +1,-1,)

1
o= U+ 1 - 1)
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We define é = {X, y,Z} as the offset between the origin of the frame and the center of

mass. It should be emphasized at this point that the origin does not necessarily coincide
with the center of mass. Although the test bodies are typically axisymmetric, and ideally
the geometrical center is the center of mass, mass and/or mounting imperfections can
displace the center of mass from the geometrical center.

Note that if the origin is at the center of mass, the body frame coincides with the
principal axes, and O(1/R") is neglected, then the resulting potential is the so-called

MacCullagh formula:

Ve=-

GM{M, GM, (

rl-3lp),
TR R)

wherelp =a/R 'i-a/R = lzlxx + mzlyy + n21ZZ is the projection of the second order

inertia tensor I on R.

The force acting on the body is the gradient of the potential (the negative gradient is
the force acting on M,).

The resulting total force components, in body frame, arc:

F,=G3 M{M—B—’Jrﬂ[(y ~ D+ 3 54 30,7
R,

i=1 , ;

(A B A2

1 5

+R—4[(§r,.-1_,,_v-13+21xx)1i+3ml.(51i2-1)1xy+3n,.(51 -DI,. +15tm:n 1,1
i

1.1 4 ) 5 2 5 2

+RT[5(3511. - 301, +3)Jm+5(7mi —3)Iiml-Jyyy+-2-(7nf- =3 n .

i
2 33672 2 52 2
(71 z)lmjm+—-(71 =) e + G5 mE =517 =5m 1))y
15
+—2—(7m -Dlnyy+3 2351, ni2—51i2-5nl-2+1)JX::+?(7ni2-l)liminzz

2
+ 3717 =ymn; T xy 1+ HOT}
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F, = M3[31m x+(3m —1)}‘!+ 3mini'z']
i=1 , R
4[(— —Ixx —Izz +2lyy)m; + 31, (Sm = Dlyy +15L;m;n; iIxz +3n; (5m -Dly;]
1 5_192 1 5
+ =S5O =Y m Iy + S@sm = 30m +3)3yyy + 2 = 3mn iy
]
-(3512 2-5m2 =512 4 Dy + 2112 - ymn 3 o +—(7 -3)l.m.J
xxy ¥ z '” i™i7xyy
15 3
+=m? - Hmn; Jyyz+—(7n ~Dhmdczz 4 235m7n - 5m =502+ Dy,
+3(Im? ~Dln. 3,1+ HOT}
F. =G 3 M{—+M_g[31,.nif+ 3mn, ¥+ 3(;1,.2-1)3]
i=1 I RI:
LICr -1, -1, +21 15Lmn L, +30(5n.2 DI +3m.(5n% 1)1
+R7[(§- i + --)n +156m;n; 1, + '-( n;" - M+ mi( n - ) _‘.:]
i
1.5 5 I
+ F[E(wf ~3)nd +-2-(7mi2 -3ymnd,, + -2-(35n,.4 ~30n2 +3)1..
l
15
(712 DM+ 2651202 -512 502 413, S Om =D,
2 2 2 2 15
+= (35m n; Smi -5ni +1)Jm+——(7n —l)ll-niJm+—2—(7n 3)mlnlJ‘--
+3(In2 -1)lm. 3 1+ HOT}
where

2 2
Fi =(Iyy +1,, ‘ZIxx)l,- + (L +15, 'Zlyy)m,' + (1, "‘Iyy _lez)”i

Note that the force has the following order of magnitude:

— 5
F 3625300 + 0B+ 022 ) O+ HOT)

i i i 1 I
Where Ly is a typical length of the test body, I;Q—B <<1,and 7‘;— <<l.

i i
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Gravity Torques

The torque, acting on the test body, can be computed with respect to the center of
mass or with respect to the geometrical center. Both coincide when the body has perfect
symmetries. In reality there arc mass imperfections that cause the center of mass to
deviate from the geometrical center. Since we have no a-priori knowledge of the
imperfections, our reference point for computing the torque is the geometrical center.

Figure 79 A Model for the Torque

There are few approaches for computing the gravity torque. Our approach is to
integrate the torque due to mass element in each body. The torque with respect to an

arbitrary point is, therefore:
T,=Tcw +5><ﬁB
where,
dxR

- ~ 7 N
Tew =G J [ dx—dMgdMo= G Im; [ “==dMy
RoRg I =t g I
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_ 7 NooF
momgr i=1 RgTr

There are three approaches to compute the integrals. The choice of the approach
depends on the size of each body. If both Rz and R, are small compared with R, than
we can expand r, and obtain an analytical approximation. If only R is small, as in our
case, we can approximate R, but have to integrate numerically in R, - If both are large
relative to r, then the only way is to perform a double numerical integration. In our case,
not only R, is large, it is also surrounded by Ry, so there is no topological way to
expand rin R, .

y 1 2 2
T =3G2M-{—‘3-[m.n.(] -1 Y+inl -Iml +(n -m)l ]

x i=1 ! R i zz yy Tixy 1 ixz i iz
i
2 2 2
P [n (5m™ ~1)J -m (5n” -1J +n (5" -1J +100mnJ
2R i i wy i zzz 0 i xxy iii xyy
-m (51:Z -1J -10/mnJ +m (lOn2 —Sm2 +1)J
i i Xxz i i xzz i i i yz

—n (10m% =5n” +1)J  +101 (> —m>)J ]+ HOT}
1 1 1 1

i i yzz xyz
N 1
2 2
T =3G3X M{—[Un{d -1 Y=mnl +imI +(°-m>) ]
y i=1 PR3 i xx oz iixy iiyz i i xz
i
2 2 2
[-n (5I°=0)J +1Gn" -1)J —100mnJd —nGm°-1)J
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N 1 2 2
T =3G3 M{—[m{d -1 )-(m -1I") +mnl -Inl ]
z i=1 PR3 PPy oxx i i xy iixz 11iyz
i
—[m (512 -DJ -1 (Sm2 -DJ +1 (10m2 —512 +1)J
) i i xxx i i yy i i i XXy
2 2 2
-m 107 -5m~ +1)J +100mnJ +m (5n~ =-1)J -10/mnJ
i i I xyy i i xxz i i xzz i i1 yyz
-1 (5n2 -DJ +10n (m2 - 12)J 1+ H.O.T}
] j i i xyz

i yzz i

The order of magnitude of the torque is:
2 3
To3cHMe {O(LB2 )+ O(ZE)+ HOTY

i

4

If the origin is at the center of mass and the body frame coincides with the principal
axes, then the resulting torque is reduced the well-known expression (based on

MacCullagh formula):

N Mi
Tx e 3G (IZZ _lyy) 2"'_3"11 n.,-
i=1R;

N M.
T, =3G (g ~1,) 3—5hn
i=1R;

1

I =36, -1, S M fm,
z = (yy xx)z 3 Iml
i=lR,'

Proposal for frequency decomposition

We would like to propose a more general approach for a closed-form solution of the

force/torque in terms of their frequencies.

Let us expand the force in potential orders as well as a Fourier series in the spin
angle, assuming a pure spin around the axial axis of the test body.

d+1 =
a\" + 3 [a\" cosng + by" sinng]}dM,

n=1

FeG L %y
®, R %
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where d is the degree of the inertia. Let in\'jzk = fx"yﬂ"zdeB than d=i+ j+k.

Assuming that we have carried out the integration (analytically or by numerical means),
F can be expressed as:

- dmax d+1 _ _
F=G Y {A(()d)+ Y [A,(,d)coan)+B,(,d) sinn@]}
d=0

n=1
- (@ _ E@
where A = [ 21 _gM_ and B = [ 22 _dMm .
" g RIETe " TR, R

These coefficients may be viewed as a generalization of the inertia coefficients of Ro-
If R is topologically connected (i.e., Ry is outsideRy), and if R, is sufficiently
small, then one may asymptotically expand these integrals. This will result in the inertia
coefficients of Ry, . In our case, these coefficients can be computed numerically, or
sometimes analytically, when R, is simple enough.

For a more general rotation, one needs to express the direction cosines in terms of the
general transformation matrix (rather than the single-axis rotation).

Order of Magnitude and Similarity Analysis

The dominant sources of the gravitational attraction are the capsule, the Earth, and to
a lesser degree the Moon. Let us perform a qualitative comparison of each source. First,
we should note that the force acting on the test mass is not a homogeneous function of the
mass and the radius (as a force acting on a point mass). This is because the parameters
R and M, contribute as:

e R A AR
R R R R

FoaFO4pO gD p®,

where F© represents the 2-Body term, and so on (the order enumeration is according to
the corresponding Inertia order). Therefore, it is impossible to express the ratio of forces

from different sources as F(MLRI)/ F(M2,R2)x f£((M1/M1)" (RY/R1)").

On the other hand, each order is homogeneous, that is
FOMLRY/F®(M2,R2) = (M1/ M2)(R2/R1)®

Therefore, in order to compare different sources of attraction, we must consider each
order separately.
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The following qualitative discussion concerns the force difference between the two
test bodies. Let us denote f() as a generic function, then a generic expression for the

force acting on test mass B, is:

'l = f(m po(#) + f(ﬁj;)O(%) + £ ,-:)0(;‘;) + £y j;)O(%)

We present two models for the force difference. In the first model the two test bodies
are centered, and the inertia components of the bodies are different. In the second model,
the bodies have equal inertia, but are not centered. These two models are idealization of
the two sources of difference, while the reality is probably a combination of these.

The force difference for the first model is:

B B 1 - 1 1 1
AF=F 2 -F"! =f(AM;)O("R—z)+f(AP§)0(F)+f(A12§)O(F)+f(AI3;)O(F)

The force difference for the second model is represented by a differential. For central
deviation ¢, the force differential is:

B, B 1 — 1 1 1
dF =F 2 -F 1 =VF-¢= f(M,)O(F)‘Ff(p,)O(F)'f'f(lz,)O(—R—S)"-f(I:;,)()(F)

The ratio between force terms of order k from two different sources 1 and 2, is:

F“(M,R) M, (RY
FO(M,,R) M,\R,

The following table compares the force order of magnitude due to different sources.
Note that we eliminated order 0 (2-Body), since the test body is in free fall.

Table 1 Ratio of force terms for few orders for the dominant gravitational sources

Inertia order | Capsule / Earth Capsule / Moon Earth / Moon
1 4*10° 8*10* 2*10’
2 3*10° 3*10" 1*¥10°
3 2*10" 1*10% 6*10"
4 1*#10" 4*10" 4*10"
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It is obvious that the effect of the Moon is negligible. The Earth is dominant only
with respect to the gravity gradient. Again, as the order under consideration becomes
higher, the effect of the capsule increases.

To gain more insight into the nature of gravitational attraction let us examine the
force. It can be rewritten in the following form:

F- o(R )o(c)+0( )O(c )+0( )0( )+0( )o(c)

Where ¢ represents the direction cosines. The notations ¢ and c¢® show the nature of
the degree of the direction cosines (odd or even). For example, a square of a particular
direction cosine has an even degree, while a product of the three direction cosines has an
odd degree. Now, suppose that the test mass is at the center of the cylinder. Since for
each direction cosine to a mass element there is an opposite direction cosine, all the odd
terms are cancelled out. Therefore, the only non-zero contribution is due to the even
terms.

Another important issue is the role of the test body mass and size. For this purpose we
perform a similarity analysis, as shown in the following.

We formulated the gravitational potential as an asymptotic series in 1/R™ . Each term
in the series has an inertial tensor of degree n — /. For example, the first term is of order
n =1 and its inertia tensor is of order O (the test body mass). The third term is of degree
n = 3 and its inertia tensor is of order 2. This non-uniformity introduces a problem, as
mentioned earlier, when one computes the forces for a particular test mass, and wants to
deduct the forces for a different scale of test mass. Mathematically speaking, if F(M B

and F(M B2) are the forces due to two different test masses, then the ratio between the

forces is not a homogeneous function, that is, F(M )/ F(Mpg,) = g((M g, /MBZ)m)
where g is a function and m is the degree of the homogeneity. Note however that each
term of the series is homogeneous by itself. For example, the first term is homogeneous
of degree one, that is, the ratio between forces equals the ratio between the masses.

We will distinguish between two cases. In both, the mass distribution of the different
test masses can be scaled. The first case is when the difference in masses is due to a
different density. Since the forces are homogeneous of degree one in density, the ratio
between the forces is equal to the ratio between the masses. In the second case the density
is the same, and the different mass is due to different sizes. In this case we will apply a
different similarity to each term. Let L and M be scaling factors for the length and the

1/3
mass, respectively. If the density of different test bodies is the same, then LxM | Let
m = n — I be the order of the moment of inertia. Its similarity dimension is L™ M , or

M™™3 or I™*3. The acceleration similarity is M™' or I™. The following table
summarizes the similarity dimension for each term in the potential.

128



Table 2 Similarity relations for the gravitational potential terms

Potential Order Inertia Order Inertia Acceleration
n:1/R" m=n-1 Similarity Similarity
1 0 M (L%) 1 (1)
2 1 M4/3 (L4) Ml/3 (L)
3 2 M5/3 (LS) M2/3 (LZ)
4 3 M?* (L9 M (D)
5 4 MW M43

To summarize, given the force (or the acceleration) due to a particular test body, we
can deduct the force (acceleration) due to another geometrically scaled test mass. The
acceleration ratio (of two different test masses) versus similarity dimensions (mass and

length) is illustrated in the following plot.

12— . . .
n - Potential Order (1/R")
10} /]
/
/
= / 5
- n=
3 s Valinkd
E Kl
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2 x'/
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0( 6 ,f/ A
- // A
© S n=
5 s
y 4 S ]
< e -
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i n=
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Figure 80 Scaling of Acceleration of Test Mass
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The maximum potential order considered in this analysis is the hexadecapole (n = 5)
which involves the fourth-order inertia integrals. We computed numerically the forces
associated with the hexadecapole for a body with equal second-order inertia integrals (in
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order to minimize the quadrupole term). The results show that, at the worst expected
location inside the capsule, the maximum acceleration associated with the hexadecapole
term for a 1-kg proof mass are less than 10'® g. In other words, for the accuracy goal of
this experiment there is no need for belted cylinders (which would reduce the
hexadecapole component even further). Proof masses with equal second-order inertia
integrals (or alternatively moments of inertia) and construction accuracy of order ten
microns are sufficient to make the contributions of all the higher-order gravity terms
negligible.

EFFECT OF INERTIA IMPERFECTION ON A SPINNING TEST MASS

Our goal is to minimize the gravitational forces acting on the test mass. The force
equations reveal that the dominant term under our control is the term corresponding to the
second order inertia. The CM offset effect may be bigger to start with but it can be
reduced by centering. The direct way to minimize the forces is to require equal second
moments of inertia. The residual forces then are due to mass imperfection, and to higher
order inertia integrals. The purpose of the following discussion is to explore the effect of
each term for a spinning test body.

First we will evaluate the mixed-inertia terms due to the imperfection.

We assume that the imperfection is due to disturbance in mass and in length. The
nominal test body is a perfect cylinder, with radius R, and length L,. In order to minimize
the force we require that Iyy = Iyy = I,,. This constraint results in a given aspect ratio of

the cylinder as follows: Lg = ﬁ Rp. Given the mass density, the mass or the sizes of the

cylinder are now functions of a single free parameter. For example, given the mass, M,
1

Mg )3
T Pp

and the density, pp, the length is: Ly =(

The similarity dimension of the k-order inertia is: [/]= MIX. Thus, the perturbed k-
ordered inertia is: [8/] = L* oM + kML*'8L , or

ol| [oM oL

— = — |+ kl—

I M L
Next we consider the effect of the spin. The test body is spinning about its x-axis with
a frequency that will be regarded as a fundamental frequency, or P1 (period one). We are

primarily concerned with P1 which is the period of the measured signal. For that purpose
we will analyze F), by substituting the direction cosines, shown below, into the force

expression (note that y is the sensitive axis of the accelerometer).
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I =1(;P1); m =m (t;Pl); n =n (¢ Pl)
i i i i i i

It is important to note that the forces are expressed in body frame. The direction
cosines are Pl-periodic. Moreover, if the body fall such that the body x-axis is parallel to
the capsule X-axis, only m and n are periodic, as will be seen from the following
discussion.

The periodicity in time is introduced through the direction cosines that represent the
orientation of the body frame relative to the capsule frame. The transformation between
the two is:

x 1 0 01X
yi=10 8 sO}Y
z 0 -s0 cO||lZ

The resulting direction cosines are:

-2 X .6
R R
y YcO+Zs0
m=-"—-—= -
R R
nel _-YsO0+ZcO
R R

! is a cyclic function only if the body deviates from the X-axis. If the test body is
perfect, then only the point mass term and the first term of O(1/R*) contribute to Fy .
Otherwise, M,7 introduce higher harmonics. If the power of the direction cosines is even

(N;). than the additional harmonics are: P ,P,,---, P, For odd power (N,) the

0342 NE

additional harmonics are: P P, -.-,P, . The dominant time dependency of a perfect

Yo
body is introduced through the first order attraction on a point mass. It results in a
fundamental frequency, because the gravitational attraction is static in the capsule frame,
while the measurement is in the rotating body frame.

The expected frequencies are the following. P1 from the point mass termO (1/ R*).

P1 and P2 from the offset term O(l/R"). Since I’ contributes P2, the term of o(/Rr")

contributes P1 and P2. However, because of the almost axial-symmetricity of the test
body, I ; is almost a constant, so the dominant frequency of O (1/ R’ ) should be P1. The

term of 0(1/ R* ) contributes P1, P2, P3 and P4, where P2 should be dominant.
The analysis above is for the x-axis parallel to the X-axis, that is, for / = constant .

Otherwise /= /@) and higher frequencies are involved. The explicit orientation
dependency of period one (P1) becomes:
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Body(e P)- G E M F(Z) F(3) 1 FA F(5)
y 21 g2y TR3y R4 Y R§ y
1

where
f(z) =M (); cosO +Z sinf)
y B i
f(3) =3M /\A’i();_ cos@ + Z _sin6)x
y B i 1
FA {E[AX’?Y‘. +1GBrOYP3 472 2)- BT, }cosB
y 2 i i 4 i i i

+ {E[AX.ZZ‘, 1By i22 4 23)- BZ_}sinﬂ

2 i i 4 i i i

5

5(

'ﬁy(S) - ~3)7 cosO + Z,sin@) X I,

and X, = X/R, ¥, =Y/R, Z, = Z/R arc the direction cosines in the capsule frame.

An interesting case is the effect of the attraction of a point mass located on the Z-
axis. It may represent the Earth attraction on horizontally falling body, or the caps on the
top or the button of the capsule.

Let the attracting massM, be at Z1=FR, in the plane X =Y =0 . Using the

relations: Z, = R sgn(Z,), Z, =sgn(Z,), Z* =1, and substituting the attracting mass
coordinates results in the following simple equation:

M
F‘?"d‘ (6:P.1=0)= GM; [—B+-1—L(7B+5C)}sgn(zl)5ine

R? 8pg?

Again, the relations above are the terms corresponding to P1. The other frequencies
may be observed from analytical expansions, or from a numerical frequency analysis, as
demonstrated in the next section.
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Numerical Investigation of an Imperfect Spinning Test Body

The scenario under investigation is shown in Figure 81. The capsule consists of a
hollow cylinder, covered by two flat caps and a total mass of 500 kg. The test body mass
is 1 kg with sizes: Rp =0.0412m and Lg =0.0713m. The geometrical and mass

inhomogeneity errors are: SL/L = 10* and 8M/M = 10”. Consequently, the offsct
components are: X =1.7 x 106m, y=2x 10°%m, 2=1.7x10"%m. The components of the

inertial matrix are: Iy =8.5x10™ kg-m?, Iy =8.501x107* kg-m?, I, =8.5015x10™*
kg-m’. Note that the nominal values of those are the same. The mass perturbations
prevent the elimination of the following inequalities: Iyy +lyy ~217, =0,
Ixx + 177 =2lyy 20, Iyy + 177 =2Ixx =0.

Iyy =3x1078 kg-m?, Iy, =3x107 kg-m®, Iy; =4x10™® kg-m®. The components
of the third-order inertia tensor are: Iyyy =5 x 10719, Iy =8x 10719, 1,77 =8x 1071,
Iigy =6%107"° 14y =6x107°0 Iy =7x107' 1y, =8x107'0, 1y, =6x107",
Iyyy =8x1071%, Iy, =7x107' (all in kg-m’).

Z\ ‘
-

A

2.3 [m]

7 3
v

1.2 [m]

Figure 81 Coordinate systems for the test body and the capsule (dimensions account for
the thickness of the capsule walls)
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The gravitational force and the torque acting on the test mass were computed at 9
points inside the capsule. Three points along the axial axis, three points along an axis
deviated by 0.1 m from the axial axis, and three points along an axis deviated by 0.2 m
from the axial axis. The ninth point is the farthest away, thus representing the worst case.

05}

A+

Figure 82 Tested Points inside the Capsule

We are mostly interested in F| (F is in phase with F,) and inT’, . Because of the

free fall, we exclude the 2-Body terms. The following plots show the angular history of
the force/torque for a single revolution with respect to the x-axis, and the corresponding
spectra. The latter are normalized, such that the highest amplitude is equal to one. The
results are given in the following 18 plots. The analysis of the frequency spectrum
requires a closed look at the equations for the force and torque, considering the particular
location of the test mass relative to the capsule. Some of the results are non intuitive. The
general approach to estimate the results is to specify each term according to the degree of
the direction cosines (odd or even), and consider possible cancellations due to anti-
symmetricity with respect to the radius vector between the test mass and each capsule
element. The results are shown in the following figures.
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Figure 99 Ordered Force and harmonics at Point 9 due to Capsule Attraction
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Figure 100 Ordered Torque and harmonics at Point 9 due to Capsule Attraction
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The frequency spectrum for the force and the torque are shown in the following

tables. The dominant frequencies are in bold face.

Table 3 Frequency spectrum along the capsule axis

First Order Second Order Third Order
F PO, P2 PO,P1,P2,P3 P2, P4
T | P2 P2 P2,P3,P4

Table 4 Frequency spectrum to the side of the capsule axis

First Order Second Order Third Order
F |PO.P2 PO,P1,P2,P3 P1,P2,P3,P4
T |P2 P2 P1,P2,P3

Table 5 Frequency spectrum close to the cap

First Order Second Order Third Order
F [P, P2 P1,P2,P3 P1,P2,P3,P4
T |P1,P2 P2 P1,P2,P3

The orders in the above tables are the following. Order 1- offset or inertia order 1,
O(1/R?) for the force. Order 2- inertia order 2, degenerates to MacCullagh formula for a
perfect body (or with respect to the principal axes), O(1/R*) for the force. Order3-
inertia order 3. O(l/ R’ ) for the force.

It is important to emphasize that the relative orders depend on the mass imperfection.
For example, we should not rush to a conclusion regarding the contribution of the offset.
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The dominant contribution for a perfectly symmetrical body is from the second order. In
this case the torque is in agreement with the MacCullagh formula. The spectrum
associated with the second order can be obtained by noticing that the direction cosines, m
and n, have period one: m — P1, n — P1 . Therefore,

Tx = (Izz-Iyy)mn — P2, Ty = (Ixx = Izz)n — Pl , Tz = (Iyy — Ixx)m— PI.

Note that Iyy =Izz, thus both the offset term and MacCullagh term are amplified by
the offset. Tx is null for a perfectly symmetrical body. Ty and Tz show various
frequencies. However, Ty and Tz acting on a perfectly symmetrical body contribute Pl
according to MacCullagh formula. Also note that order 4 may play a role as well, because
we assumed equal principal inertia of order 2. This assumption nulls the perfect body
contribution of the second order but it does not cancel completely the term of order 4.

The frequency P1 is dominant only at the extreme location (point 9 inside the
capsule), due to the offset. We investigated the vicinity of this point, and found that the
amplitude of P1 decreascs as we move farther from the cap.

Concluding Remarks

We presented an analytical and a numerical analysis of the gravitational perturbations
acting on the test mass due to the capsule. The outcome of this work is a closed-form
formulation for the force/torque as well as a flexible and interactive computer code.

Our analysis predicts that the gravitational perturbations, acting on the test mass due
to the capsule attraction, are safely within the limit required by the experiment if
construction criteria, outlined below, are followed.. Moreover, along most of the test
mass trajectory, the perturbations are far smaller than the limit, and their frequencies are
different from the modulation frequency.

The conclusions from our investigations concerning the construction of the test
masses are:

- The test masses should be smaller than about 10 cm and lighter than about 2 kg.

- The second-order principal moments of inertia should be all equal within
construction tolerances, i.c., SL/L < 10™.

- There is no need for belted cylinders (as used in the STEP satellite experiment)
for the accuracy target of our experiment.

- The mass distribution of the test masses should be as uniform as possible within
SM/M < 107,

The investigation carried out is essential for the definition of the tolerable sizes,
masses, inertia characteristics, and construction accuracy of the sensing masses.
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RELEASE/LEVELING MECHANISM DEVELOPMENT
Introductory remarks

The leveling and release mechanism must be able to release the detector with initial
conditions that do not impair the accuracy of the science measurement. Once the effects
of the higher-order mass moments on the proof masses are made negligible through the
right shapes and sizes, the most important external perturbation is the Earth’s gravity
gradient. Other perturbations are of course present but they can be made negligible
through suitable thermal design, reducing the pressure inside the detector, and shielding
the detector from magnetic disturbances.

The noise components associated with the Earth’s gravity gradient manifest
themselves at twice the spin frequency and (depending on the orientation of the spin axis)
at the spin frequency. The latter are the damaging components. The gravity component
of importance to us is the g, where x is the spin axis and y the sensitive axis of the
accelerometer. As shown previously, this component is proportional to the product
sin(¢)d, where ¢ is the elevation angle of the body symmetry axis with respect to the
horizontal plane (defined by the local gravity) and §, is the centering error along the spin
axis between the CMs of the proof masses. The formulas derived previously for the
Earth’s gravity gradient components will be utilized at the end of this section to set a
limit on the tolerable tilt angle at release.

Additional harmonic components come from the rotational dynamics of the
instrument package. These harmonics are related to the inertia characteristics of the
package and the rotational velocity errors at release. In summary, the leveling and
release mechanisms must provide an orientation of the spin axis close to horizontal (to
reduce the Earth’s gravity gradient component) and rotational velocity errors sufficiently
low to avoid saturation of the accelerometer output.

The detector has also its own elastic dynamics (as shown in a previous scction) which
is excited by the conditions at release. We can conscrvatively assume that the release
will excite the elastic dynamics of the detector up to its end of scale. The experiment
strategy is to damp the elastic oscillations through electrical dissipative forces (see later
on for experimental results) exercised for a few seconds after release. Once the elastic
(natural) oscillations are abated to a level well within the dynamic range of the
instrument, the electrical dissipative forces are removed and the detector operates as a
high-Q detector. After the natural oscillations are abated, the oscillations of the proof
masses will be forced by the rotational dynamics of the detector during the fall.

In order to understand the effects of initial errors at release upon the differential
accelerometer output, we need to develop a simplified model of the accelerometer. This
model must contain the key dynamical elements but must also have a sufficiently simple
formulation that shows analytically the origin and frequency content of the proof masses
acceleration.
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Simplified dynamical model

The differential accelerometer consists of proof masses that are about twenty times
lighter than the mass of the instrument package. Moreover, the proof masses are
expected to move with respect to the CM of the whole package by only microns during
the early transient phase and by nanometers during the measurement phase of the fall.
Consequently, the rotational dynamics of the package is unaffected (and this will be
confirmed in follow-up analyses) by the tiny motions of the proof masses. On the
contrary, the rotational dynamics of the package drives the motion of the proof masses.
In summary and with a good degree of approximation, the rotational dynamics of the
package can be assumed to be steady. The solution of the attitude motion of the rigid
body is available in close form for a free spinning body. Consequently, we need to write
the equation of a proof mass that is mechanically constrained to the rotating (and
wobbling) instrument package in order to understand the origin and frequency content of
the acceleration output of a single proof mass. The analysis can be extended to two proof
masses.

The general expression for the acceleration of a test mass at point P with respect to O
in a rotating system F can be written in matrix form as:

X X X k.38
[@]iy i+ [0]@]iy i+ o] xp+ 135 ={ap - a0} (60)
Z Z X &

where [CU] is the angular rate matrix of the reference system and {x y z}" the position of

the point P with respect to the center of the reference system O (placed at the instrument
package CM).

For a rigid body the equations are projected onto the axes attached to F itself (body
axes) where the position vector is assumed fixed with respect to the center of F.
Consequently, eqn. (60) transforms into:

B B
X

[“’]B' y +[a’]B[w]B Yy ={aP—ao}B 61)

Z

Where the angular rate matrix projected onto the body axes can be computed from the
rotation matrix that relates the body axes to an inertial system:
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B
[@]” =RipRgr =| 0, 0 -0, (62)
-0y, @y 0
‘ After substituting eqn. (62) into (61), we derive the well-known acceleration matrixes

that provide the acceleration gradient at the point P with respect to O as observed by the

rotating observer (or equivalently a proof mass of the detector):
{ 2,2 W, -
Wy" +w, —W 0, W0,
[Cl=| -w,w w2 +w,? -, : . :
= xWy 2 X YWz centrifugal acceleration matrix
-0, , -0, a)x2 + wyz
0 . -,
[E]=|-w, O @y Euler acceleration matrix
@, -@, 0

Consequently, the (apparent) acceleration gradient tensor (in body axes) between a
point P and the package CM at O is:

[A]=[C] +[E] (63)

In order to compute the expression of w,, w,, m, we need to consider the dynamics of
the instrument package that houses the detector. In other words, we must solve the Euler
equations for the torque-free case of a rigid body. We will consider an inertially
axisymmetric body and regard x as the longitudinal axis of inertial symmetry. The non-
symmetric body also has a known solution but it is more complicated as it involves
elliptic integrals.

After setting v = component of the angular rate along the axis of symmetry, the well-
known solution of the Euler equations is obtained as follows:

=v
w, = -w,cos(Qr) (64)

. = w, sin(Qr)

in which the origin of t is at the time when w, attains its maximum value and where:

v body precession rate
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w; = Jwyz + wzz = \/a)yoz + wzoz transverse angular velocity

The quantities w,, and w,, are the initial components of the angular velocity

orthogonal to the symmetry axis. In our case, they can be interpreted as the rotational
velocity errors at release of the instrument package.

After substituting eqn. (64) into the matrices [C] and [E], we obtain the component of
the overall acceleration gradient matrix:

2

a,, =-w;

xx
Ay = Ay = =0, COS(Q)(2-V)

a

xz = Ay ==, 8In(21)(L2 - v)
a,, = %w,z[l - cos(ZQt)] +v°

a,. =a, = —%w,z sin(2€2r)

a., = —o?[1+cos2Qn]+v?

N | —

The acceleration vector a measured at P and projected onto the body axes, is simply:
{a} =[A}{d} (65)

where {8} = [9,, 0,, 8,]" is the position vector from O to P (we have changed the notation
to the &s to highlight the fact that we are dealing with very small distances). The
component of the acceleration along the sensitive axis (ie, z-axis in this formulation) of
the accelerometer is as follows:

a. =-w,(v - Q)cos(Qnd, + %w,z sin2Q1)d, + v+ %w,z(l +cos(2Q1))6, (66)

This acceleration is the dominant acceleration experienced by the proof mass once the
natural oscillations have been abated. In fact the amplitude of the residual natural
oscillations can be made orders of magnitude smaller than the magnitude of the 6 vector
through initial damping. Equation (66) highlights several important points as follows: (1)
the rotational velocity errors at release (encapsulated into w,) combine with the
displacement crror 8 to produce an acceleration output along the sensitive axis; and (2)
this acceleration component is modulated by the body precession rate and not by the spin
frequency. This fact was observed previously in the results of the general elastic model
of the detector. The conclusion is very important because it implies that the errors at
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release do not impact directly a possible EP signal violation (that appears at the spin
frequency). The overall advantage of the gyroscopic body (with non-spherical inertia
ellipsoid) is that the precession rate is different from the spin rate. Moreover, the
precession rate can be chosen at will by selecting the ratio of the moment of inertia of the
instrument package in order to maximize the ability of extracting the signal from the
dynamics-related noise. Since both w, and 2  appear in the expression of the
acceleration, it is advisable to make , non commensurate with v (the spin rate). The
selection of the moments of inertia ratio (and hence w,) and the ability to extract a signal
with a strength at the threshold sensitivity of the detector will be carried out in next year
analysis.

Derivation of requirements

The first requirement derives directly from the analysis carried out previously and it is
related to the strength of the components of the Earth’s gravity gradient at the spin
frequency. The resulting acceleration component [from eqn. (43)] is

da. < 3%cos(¢) sin(@)sin(vt)d, + g%cosz(d))[sin(Zvr)éy + cos(2vt)(5:]
3 (67)
u
+ F[Ecosz(tp) - l]

for an instrument package spinning about x, a sensitive axis along z, and ¢ the elevation
angle of the symmetry axis with respect to the horizontal plane defined by the local
(gravity) vertical. Equation (67) highlights the three components produced by the Earth’s
field at the spin frequency, at twice the spin frequency, and a dc term. The strength of the
gravity gradient component at the spin frequency must be substantially less (say 10" g)
than the signal at threshold. A product ¢d, of 0.1 deg-micron will safely meet the
previous condition. Consequently, we can either be more relaxed on the leveling/release
mechanism (i.e.. ¢ < 1 deg and §, < 0.1 micron) or on the centering between the two
proof masses along the spin axis (i.c., ¢ <0.1 deg and 8, < 1 micron). Both options will
be kept open for the time being because they involve several technical considerations
related to the mechanization of the leveling/release mechanism and the calibration of the
differential accelerometer. A choice between the two options will be searched for after a
dynamic analysis of the release mechanism and laboratory tests on the differential
accelerometer prototype to assess the difficulties involved with the accurate centering of
the proof masses along the spin axis.

The requirement on the rotational velocity errors at release can be readily obtained from
the following considerations. First, the rotational velocity error must be sufficiently
small not to saturate the instrument output. In this case we do not have to worry about
the instrument sensitivity because with appropriate inertia characteristics there will be no
components at the spin frequency related to the precession dynamics of the instrument
package. In this case the stronger component is associated with the first term of eqn. (66).
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A rotational velocity of 1 deg/s will only produce a signal of order 10 g which is well
within the dynamic range for the expected values of spin and precession frequencies.

However, we must also worry about the amplitude of the precession (i.e., the nutation
angle) because through coning of the body axis the accelerometer will sense the Earth’s
gravity gradient. The frequency sensed through coning is not exactly the spin frequency
because the coning adds a frequency modulation at the precession frequency.
Nevertheless, we will assume conservatively that the amplitude of the nutation angle
must be less than previously indicated for the gravity gradient related noise. For an
axisymmetric body the amplitude of the body-axis coning (i.c., the nutation angle) is as
follows:

tan(6) = j—'i"i (68)
1%

a

where w, is the transverse angular velocity at release, I, and I, are the moments of inertia
about the transverse and the symmetry axis (x-axis in our case), respectively. If we
assume an upper bound for the nutation angle of 1 deg, a spin frequency of 0.5 Hz and a
(worst-case) incrtia ratio 1/1, = 3, we obtain w, < 1 deg/s. Likewise, if we had assumed a
maximum 0 < 0.1 deg then we would have obtained w, < 0.1 deg/s. In summary, we will
establish the following two sets of requirements

a) &, <1 um (centering error between proof masses CMs along the spin axis)
¢ < 0.1 deg (horizontality of detector)
w, <0.1 deg/s (angular rate error at release)

b) &, <0.1 um (centering error between proof masses CMs along the spin axis)
¢ < 1 deg (horizontality of detector)
, <0.1 deg/s (angular rate error at release)

We will start by base lining the releasc and leveling mechanism according to option a

while keeping option b open if the tight centering of the proof masses of the detector
turns out to be feasible.
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THERMAL ANALYSIS/ISSUES

Following the procedure of the STEP project, we have estimated the pressure
requirement inside the detector for keeping the radiometer effect and the damping due to
residual gas to tolerable levels.

Radiometer effect

The tolerable pressure inside the detector is related to the maximum allowable
thermal gradient through the radiometer effect, i.e., the acceleration produced by gas
molecules emitted from regions with different temperatures™*. This effect is likely to
produce an acceleration error modulated at the signal frequency because, as the detector
rotates, it could see (static) regions with slightly different temperatures. The acceleration
produced by the radiometer effect is a = p (AT/AL)/(2pT) where p is the pressure, T the
temperature and p the density of the sensing mass. For p = 2800 kg/m3 (Aluminum) and
an acceleration error of 10715 g, we could have for example: p = 102 Pa and a
temperature gradient of 0.3 K/m, or a higher pressure and proportionally lower
temperature gradient. As a result, we can place a requirement on the product of the two
as follows p*(AT/AL) < 3x10" Pa-K/m. In other words, the requirement on the pressure
can be traded for the requirement on the temperature gradient. Early estimates of
temperature gradient across the detector diameter are very small and, consequently, a
higher detector pressure can be tolerated in a detector that is well thermally shielded.

A thermal gradient across the detector also affects the resonant frequencies of the
sensing masses through variations of: the Young's modulus of the material, the geometry
of the torsional springs, and the moments of inertia of the sensing masses. Consequently,
a thermal gradient changes differentially the resonance frequencies of the sensing masses
and ultimately affects the common mode rejection factor.

The common-mode rejection factor is related to the temperature variation AT across
the detector as follows CMRF = la. + aglAT where a is the thermal expansion coefficient
and ag the thermal coefficient of the Young's modulus. For Aluminum at low
temperatures o << ®g, &g = -3.5x10* K'! *™*" while CMREF is required to be < 10™.
Consequently, the tolerable temperature gradient for suspensions of the proof masses that
are separated by many centimeters is of order 1 K/m. This value is less stringent than the
tolerable value of the thermal gradient dictated by the radiometer effect and,
consequently, is superseded by the previous effect.

Thermal configuration of instrument package

There are 3 elements that operate at different internal temperatures in the instrument
package, namely, the detector, the preamplifier and the electronic box. The detector
should be at the lowest possible temperature with an upper limit of 10 K. The Gallium
Arsenide FET preamplifier can operate from low temperature (> 10 K) up to room
temperature with slightly reduced performance at high temperature. The electronic box
must be kept close to room temperature. The three boxes also dissipate different amounts
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of power. The power dissipated by the detector W, is in the nW range which is
negligible. The power dissipated by the preamplifier and the electronic box are typically
W, = 100 mW and W, = 500 mW which are both non negligible. A simplified thermal
scheme of the three elements is shown in Figure 101.

Thermal shields

Mass 1 Mass 2
"\ /" Preamplifier
\ /

Electronics
box

Figure 101 Simplified thermal scheme
Thermal issues and design

Thermal issues are not solved by simply meeting the thermal gradient requirement
and lowering the pressure. The experiment has two cold parts, that is, the proof masses
plus casing (i.e., the sensor) and the preamplifier and a component at almost room
temperature (inside its case), that is, the electronics box which includes battery and
various housekeeping functions.

The sensor has negligible thermal dissipation while the prcamplifier and electronic
boxes have non-negligible thermal dissipations. We need to evaluate the following: (1)
cooling down time for the sensor and preamplifier before launching the balloon; (2) the
tolerablc temperature drifts of the detector, the preamplifier and the electronics during the
measurement phase after release; and (3) the tolerable temperature drifts of the same
units before release during the check out phase.

Experimental data was provided by our partners at IFSI on the power consumption of
the units involved and their sensitivity to temperature variations. Not surprisingly, the
sensor and the preamplifier have the highest temperature sensitivity (expressed as change
of acceleration output per degree K), of order 10® g/K and 10° g/K, respectively,
followed by the electronics which is a few orders of magnitude less sensitive. If the two
sensitivities quoted above are taken at face value, the temperature variation over the
measurement time should be less than 0.1 uK! In reality, the sensor and preamplifier will
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be grounded to the cryostat temperature before release and then they will rely on their
own thermal inertia during the 25-30 s measurement phase. The temperature drift is
slow, with a time constant that is typically two orders of magnitude bigger than the
measurement time. Since variations of less than uK are unrealistic to obtain, the question
can be put as follows: how well an acceleration signal at the expected sensitivity can be
extracted from a slow varying background (dependent on the temperature drifts) which
increases by several orders of magnitude over the measurement time?

Answering this question is important to define more realistic requirements for the
thermal design, in general, and for solving point 2 outlined above, in particular. In order
to answer this question we have investigated techniques of signal extraction from a noisy
signal which also drifts by a very large amount due to temperature variations.

This exercise is not meant to be a comprehensive work on the techniques that will be
adopted for extracting the signal from noise but rather it is limited to the issue described
previously. In summary, we have taken a sample 0.5-Hz signal with a strength of 2x10™"
g (at 95% confidence level), added to a random noise with +/30x10™" g ms and to a
double-cxponential (other functions have also been tested) drifting acceleration that
ramps up to an acceleration intensity many orders of magnitude bigger than the signal.
The double exponential (or similar function) represents the different heating rates of the
sensor and the preamplifier with two different time constants TC, and TC, where we have
assumed TC, > TC, to account for the sensor’s bigger thermal inertia We have practiced
a basic technique to extract the signal, without assuming any knowledge of the functional
expression of the thermal drift, for increasing steepness of the thermal ramp (that is the
rates of change of the two temperatures).

Figure 102 shows a conservative situation in which the thermal-induced acceleration
ramps up to 2x10® g, that is, its maximum value is 7-orders of magnitude bigger than the
expected signal. The signal was extracted with reasonable ease by detrending the signal
+ noise with a 6-order polynomial and computing the FFT of the detrended signal. This
extraction process would not succeed for much stronger thermal drifts, although no
additional effort was devoted to improving the process because the results obtained were
already satisfactory. After considering these results, we can establish thermal drift
requirements for the relevant units as follows:

Sensor temperature drift: < 0.0067 K/s (i.e.,~0.2 K in 30 s)
(69
Preamplifier temperature drift: <0.017 K/s (i.., ~0.5 K in 30 s)

For the temperature of the electronic box we can safely assume that it is sufficient to
keep the temperature variation below a few degrees over a 30 s maximum free-fall time.
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Figure 102 Example of extraction of signal from random noise plus a strongly-dominant
slow-drifting acceleration noise (Temp-1 = sensor and Temp-2 = preamplifier).

Preliminary Thermal Results

A preliminary thermal analysis was carried out by using a finite-difference thermal
analysis code to address the two more critical thermal issues, that is: (a) the cooling down
of the detector and (b) the temperature rise of the preamplifier during the measurement

phase.
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Results of the cooling down are shown in Figure 103 under different assumptions of
radiation and conduction through a cold strap with a conductance of 0.02 W/K
connecting the case of the detector to the cryostat. The most relevant results are those
shown in Fig. 103(a) while Figs. 103(b) and 103(c) represent cases that were run to
assess the relative contributions of radiation and conduction, respectively. As shown by
Fig. 103(a) the cooling time needed, with the cold strap, to reduce the temperature below
10 K is shorter than a week.
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Figure 103 Temperatures of detector during cool down under various assumptions

The second critical issue that we addressed is the temperature rise of the preamplifier
during free fall (i.e., the measurement phasc). The prcamplifier was singled out as more
critical, from the thermal point of view, than the detector because it has high power and
low mass while the detector has negligible power dissipation and higher mass. We
assumed that the preamplifier is at its desired temperature value (ie, 10-20 K) before the
instrument package release and that a thermal shield is interposed between the
preamplifier box, which is attached to a thermal radiator, and the detector.
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Figure 104 Temperature of preamplifier and thermal shield during free-fall phase

Figure 104 shows the results for diffcrent thicknesses of the thermal radiator.
Clearly, in order to keep the temperature variation below 0.5 K during a 30-s time, a 1-
cm (thick) X 20-cm (dia.) radiator is required. Additional thermal analyses will be
performed to compute temperature variations of the three connected boxes and,
consequently, define in more detail the thermal design beyond this preliminary analysis
of critical issues.
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MECHANICAL REPORT

Release sequence
The release of the package takes place in 2 stages. Initially the capsule is released from
the balloon. Then, very soon after, the sensor package is released, in two steps, within the
vacuum chamber.

Capsule Release

The combination of wind shear during ascent, the extremely low air resistance at float,
and the limited time at float make it necessary to assume that the balloon will be rocking
at the time of package release. Since it is required that capsule is vertical and non-rotating
before release, the release strategy must account for this. The present concept, developed
thus far, is to actively separate the orientation dynamics of the capsule from the behavior
of the balloon. That is, we have placed a 3-axis gimbals between the capsule release
mechanism and the portion of the gondola that stays with the balloon (capsule
leveling/release mechanism). '

As the balloon rockets back and forth, and rotates, the gimbals will be driven to ensure
that the capsule angular oricntation is unchanged. The sole effect being that the capsule
will be translating back and forth, and moving up and down slightly. During this proccss
the linear motion will be tracked from the ground. In order to ensure that we release the
capsule when it is as close to unaccelerated as possible, we will release it at one of the
extremes of the balloon pendular swing.

Since the sensor release does not have any orientation adjustment capability, the capsule
releasc mechanism must be designed to meet all the alignment and stability requirements
that cover the release of both the capsule and the sensor.

Sensor Release

The sensor release concept involves a two stage support (sensor release mechanism). The
first stage is a simple spit that holds the sensor package through release of the capsule
from the balloon. Once the capsule is in free-fall the sensor release mechanism pulls back
far enough to disengage the spit, and draw it to a position that the sensor will not hit it on
the way down. At this point the sensor is held between 6 springs, 3 on each side. These
springs will be sized so that they can not impart more force than is allowed by the
rotation stability requirements. Any transient sensor motion induced in the spit-support
release will be allowed to damp out in the 6 spring. Once the instrument package is
spinning at a stable rate, and oscillation from the initial stage of the release have damped,
the mechanism second stage will pull back further, and the instrument will drop. The
next stage of the work on this design will be to create a detailed simulation of the entire
system, in order to examine its behavior in detail.
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Figure 106 Instrument package spin-up and release mechanism
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Figure 107 Front view of release mechanism
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Stabilizing Spring (3)
In Free Length Mode
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Figure 109 Detail of release mechanism with spindle disengaged and springs still
engaged

Mechanical/Thermal Design

One of the key advances this year was in the area of the thermal design and increased
detail in the thermal model. In order to assist in this area the main supporting structure for
the sensor package had to be sized. Though most of the instrument design remains at the
concept level, it became important to examine the design forces that controlled this
component’s dimensions. The sizing involved balancing the need to minimize the heat
transfer, and therefore the support’s cross sectional area, while at the same time minimize
the support deflection, or therefore the support’s structure moment. Studies of viable
cryogenic materials suggested that a Kevlar composite would be the best material to use.
Since we intent to use a composite material, and by the nature of the design, one with a
thin wall, a further constraint on the design was a limitation on the allowable
compression load. Coupling these requirements we were able to size the main shaft in
such a way that is can support the instrument without allowing out-of-spec instrument
deflection, while dropping thermal conductivity well below the allowable level.

Below are the present support parameters:

Length =0.12m

Diameter = 0.05m

Wall thickness = 0.0012m

Kt/m = 1.9x10° W*m/K, at 10°K

O 0 0O
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Cool down Techniques

Though this will be covered in more detail in the thermal section, the preferred method
for lowering the instrument to cryogenic temperature has been re-examined and changed.
Initially we had examined using radiation alone to reduce the instrument operation
temperature to below 10 K. It was quickly clear that this approach was inadequate. Next
we examined having a cold strap in place prior to launching the balloon. We would then
rely on just radiation from the cold Dewar walls to maintain the temperature. Though this
is effective, it introduces issues related to manipulating the cold strap.

To avoid this we have since base lined a third approach, one involving cooling the
instrument down by flowing cooled gaseous helium (Ghe) through the vacuum chamber
until the instrument is cool. We would then pumping out the remaining GHe from the
inside of the Dewar. This give us a fast way to cool the instrument without having to
manipulate a cold strap.

Dewar Operation Techniques
One of the larger instrument dynamics stability issues that needs to be addressed is the
effects of the liquid cryogens during free fall:

o the fact that they may slush during the fall
o the fact that they will continue to boil during the fall
o the fact that they needs to be vented, which will cause a propulsion effect.

In order to avoid these effects we are beginning to examine novel Dewar operation
techniques. The standard approach for maintaining temperatures at this level is a Dewar
with a vacuum shroud and 2 cryogen shrouds, LN2 and LHe. But the LN2 is heavy. It can
slush, it tends to boil similarly to water, and when it is vented it produces some
propulsion, all of which will cause some dynamic reaction in the Dewar that could
disrupt the experiment. The LHe, on the other hand is quite light and is far less likely to
cause a dynamic disturbance.

For these rcasons we have decided to examine operating the Dewar, at least through the
experiment phase, without LN2. The first approach that we examined was allowing the
LN2 to completely vent prior to dropping the experiment package from the balloon. This
is an acceptable approach, though it does produce some limitation on system timing. We
would rather be able to begin the experiment when the system is settled, rather than
waiting longer for the LN2 to boil off. Instead we are going to examine the possibility of
allowing the LN2 boil off on the ground, and then flowing the boiled off LHe into LN2
shroud.

Dewar Layout

We have moved the Dewar opening from the top of the chamber to the bottom. The
initial Dewar design had the opening for inserting the instrument package into the top of
the Dewar. This meant that all the feedthroughs into the system, as well as all the service
feedthroughs for the Dewar itself were broken anytime the Dewar was opened. In
addition, the load path from the balloon to most of the instrument mass goes through this
connection. By moving the opening to the bottom, all the feedthroughs remain intact
when loading the system, and only the instrument crash protection is supported through
the Dewar cover (bottom plate).
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THERMAL ANALYSIS

The simplified model discussed previously has been further developed, particularly in the
area of isolation of the sensor from the (relatively) warmer preamp and electronics
module. In fact, the electronics has to be kept above a minimum temperature (for this
model, we have assumed —65C) to prevent damage to the components, and possibly
needs to be warmed further to a “cold-start” temperature at the initiation of experiment
calibration.

The design consists of a sensor supported by a Kevlar-reinforced shaft (discussed
previously) that is suspended by the rotation fittings across the dewar diameter. We have
assumed the electronics module and preamp are balanced disks supported by this same
shaft, both to one side of the centrally located sensor module. Between these various
elements we have places radiation shields to minimize views of the warmer elements to
the sensor. The model representation is shown in Figure 111. The electronics are shown
in red as a result of their maintained temperature; the preamp is just visible between the
two largest disks.

187. 8

167.5

_—_ 1472

] 86 26

—] 65,34

45, 63

25 21

‘i

<5
Temperoture (K], Time = 0 sec

Figure 111 Thermal model representation
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We have assumed that during the entire process (including cool down of the experiment)
that the electronics is maintained above -65C, as illustrated by the red disk at the left end
of the figure.

There are two fundamental conductive paths between the various elements in the model:
the supporting shaft and the wires connecting the electronic elements. The hollow shaft
has been sized to support the masses with sufficient stiffness to allow the experiment to
be balanced. The wires (currently assumed to be 4 pairs between each module) have
been sized to provide less than 1-ohm resistance per circuit. Pure-metal wire like copper
or silver have sharply peaked thermal conductivity in this temperature regime (10-25K)
as well as rapidly changing electrical conductivity, so we have assumed for this analysis
that the wires are Constantan, which has very little change in electrical characteristics
from room temperature down to 4K, but its thermal conductivity drops by a factor of 100,
providing effective thermal isolation at the experiment temperature. The conductors in
the model have been sized to accurately represent the shaft and wires, and all the
important materials are modeled with temperature-varying conductivity and specific heat.

It has been shown in earlier studies that the experiment cannot be cooled effectively by
radiative exchange with the dewar alone — it requires the addition of a thermal strap to
achieve the desired starting temperature in a reasonable period of time. However, a
mechanical strap (or straps) adds several complications to the design. The largest mass is
the sensor itself, yet this is the least desirable location to affix a strap. We are currently
considering an alternative approach: to flow gaseous helium over the experiment to cool
it. This has the advantage that after starting conditions are achieved; the helium can be
pumped out, allowing us to take advantage of the effective isolation of the mechanical
hardware.

We have run a study of the warm-up of the preamp and experiment with nominal power
inputs and the previously mentioned initial condition of the electronics module at 208K
(-65C). Using an assumed cooling of the preamp based on area ratio to the sensor and
heat flow through the wires. the equilibrium temperature of the preamp prior to startup is
approximately 20K. Using these initial conditions, and wires and support tube modeled
as described above, the temperature rise of the preamp and the temperaturcs and
estimated gradients in the sensor are shown in Figures 112 and 113.
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This study has yielded several significant conclusions for the design of the experiment:

* Properly sized alloy wires provide sufficient electrical conductance without
significant impact on the thermal performance

* The most significant thermal conductance is the shaft supporting the sensor and
other modules.

* Radiative heating of the sensor can be well controlled with concentric disks
between modules. These disks, if of significant thickness, also provide thermal
mass to slow the heating of the sensor.

* Temperature gradients across the sensor package at the end of the preamp
warmup phase appear to be quite small (see Fig. 114).

It should be noted that while the temperature rates of change fall within the previously
described limits (current estimate of maximum temperature in sensor is 0.0004 K/sec),
improvements can be contemplated which would control these rates better. For example,
the model currently has the shaft connected directly to the center of the aluminum endcap
of the sensor module, essentially a worst-case solution. A set of Kevlar straps between
the shaft and the sensor could provide high stiffness with lower conductance. However,
such improvements, as well as better fidelity modeling of the inner structure of the
sensor, require more sensor design detail.

Nodle
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Figure 114 Sensor temperature distribution at end of 20 min.

168



INSTRUMENT ELECTRONICS OVERVIEW

The overall communication and control system for the experiment is shown below.
Minimum electronics beyond that already in the detector are added to provide a data
collection and status link to electronics mounted outside the vacuum chamber. The link
electronics on the detector is a battery-powered RS-232 to IR transceiver comprised of a
110° field of view IR emitter-detector pair driven by an IR encoder-decoder and linked to
an identical pair on the side of the chamber. The total power required for this portion of
the interface should be less than 100mW. Presently the electronics will need to run at -40
°C, but we will investigate if we can go lower.

The power and telemetry control box will be a comprised of a Book-sized PC with an
Ethernet interface to a procured telemetry radio, such as the Freewave FGR1115RE
900MHz spread spectrum radio. A small IR to RS-232 module provides the interface to
the IR transceiver inside the capsule. The externally mounted system will run from a
single +12VDC 85W power source. The unit is expected to occupy a volume of 40cm x
30cm x 25cm. '

The gondola will contain a standard SIP module for ground communication and
control. We will need to provide an interfacc between the SIP telemetry interface and a
radio that links to the experiment. This interface will essentially be the same design as the
power and telemetry control box in the instrument.

Other means of communication within the capsule were considered, including a low
power 2.4 GHz radio link, and this option could be a viable alternative if the IR link is
not feasible. The major advantage to this approach would that the link does not depend on
position, and the power would be about the same.

Gondola Electrenics
I N
o | \t SIP Module with Ground .
S /i link Radio Radio Link to Gondola
~ /\4/
I Line of sight radio fink to
instrument

| — —

Instrument Link

A= At
N

" IR Emitter-Detector pair
with RS-232 to IR
encoder-decoder

IR Emitter-Detector pair

Figure 115 Schematic of telemetry links
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SYSTEM REQUIREMENTS DEVELOPMENT

Table 6 summarized key requirements of major subsystems derived thus far.

Table 6 Development of Requirements vs. Design Drivers

Design Driver originated Regmt,
Tolerable differ.
acceleration
Free-fall (time > 20 s) N/A Transient N/A Low-speed
damping time ballistic coeff.
<5s: B, > 5000 kg/m2
Amplifier noise (white) <107 oHz Preamp. N/A N/A
N Tx <60 mK
Brownian noise (white) <10 oAJHZ ®,/Q < 6x/10° LHe cryostat N/A
- rad/s
T<I10K
Temperature gradients <10" g p(AT/Ax) < TBD N/A
|Radiometer effect) 3x10"" Pa-K/m
Acceleration noise inside <10 g CMRF< 10™ Pressure inside Structural and

capsule in free fall capsule attitude
p. < 10 mBar freqs. >>
Earth’s gravity gradients <107 g 2w) Centering of N/A Verticality before
< 10" g (w) proof masses (8,) release

along spin axis
within 1 ym

0, < 0.1 um-deg

Cryostat’s gravity
gradients
(distributed mass)

<107 ¢ Qw)
<10 g (w)

Centering of
proof masses
within 10 um

Cryostat internal
diameterz 1 m

N/A

Gravity gradients of lump
masses on board capsule

<1077 g 2Qw)
< 10" g (w)

Centering of
proof masses
within 10 um

N/A

Mass-distance
exclusion zones
(see pp. 53-54)

Magnetic disturbances <1016 ¢g Use Niobium Temperature of Limit magnetic
alloy blanket package moments outside
around detector. T<Tc sensor package
Degauss proof (T, = critical M,, < TBD A-m’
masses temperature) andr>TBD m
Higher-order mass <10™g Proof masses Mass of cryostat N/A
moments with almost equal <500 kg.
moments of Intern. dia. 2 I m
inertia (OM/M ~
SL/L < 10™)
Centrifugal gradients due <107 ¢ Centering of N/A Verticality within

to skewed spin axis

proof masses
O, s 1 um

0.1°: rate errors
at release
<0.1°s

o = signal angular frequency: v, = detector resonant angular frequency
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EXPERIMENTAL ACTIVITY (IFSI/CNR)'

Our partners have been working very hard in carrying out experimental activity on
critical aspects of the detector development. The tcam at the Institute of Space Physics
(IFSI/CNR) has already built a differential accelerometer prototype and carried out
significant laboratory measurements on the prototype.

The prototype was designed with the goal of exploring key aspects of a differential
accelerometer and not for carrying out a preliminary test of the Equivalence Principle in
the laboratory. As such, the prototype has two sensing masses of the same material with
their centers of masses close together but not perfectly coincident. The prototype has
several features in common with the instrument that we expect to develop for the flight
experiment as follow: same capacitive pick-up system; same clastic suspension of the
sensing masses; same measurement chain to extract the differential signal from the
accelerometer.

Figure 116 and Figure 117 show schematics of the differential accelerometer
prototype. Each sensing mass (bluc and orange elements in the figure) is shaped to
compenetrate (with leeway) into the opposing one so as to bring the two CMs close
together (perfect coincidence is not a requisite for this prototype).

Figure 116 Exploded view of differential accelerometer prototype

' Section contributed by V. lafolla S Nozzoli and M. Fiorenza of IFSI/CNR funded through Italian Space
Agency (ASI).
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Figure 118 Simplified electrical diagram of signal pick-ups

Each sensing mass can rotate (through elastic restraints) about the pivot axis on cach
side of the accelerometer. The two pivot axes are parallel to onc another. The sensitive
axis of the differential accelerometer is perpendicular to the pivot axes and to the
longitudinal axis of the instrument (spin axis). Each sensing mass has two fixed
capacitor plates for signal pickup.
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The output signals of the sensing masses are independently amplified and sent to the
data acquisition system for conditioning, filtering and comparing. This prototype
differential accelerometer builds on the heritage of (single) high-sensitivity
accelerometers that were built at IFSI through the yecars. These accelerometers were
tested extensively in the laboratory and in the field™". Key characteristics of the
differential accelerometer prototype are summarized in Table 7.

Table 7 Key characteristics of differential accelerometer prototype

Item
Sensing mass 0.22 kg
Quality factor 2900
Resonance frequency 18.12 Hz
Preamplifier noise temp. (K) 0.76
Preamplifier type AD743 (commercial)
20 Istituto di Fisica dello Spazio interplanetario
Tilt Station Gran Sasso, italy
10 —
g n
Eo— \ n
-10 —
[
_20 lllllIlIlIlIl'lIllll!II]IIIIII
1 3 6 7 9 11 13 15 17 19 21 23 25 27 29 31
1 time (day)

Figure 120 Luni-solar tide signal filtered with 49-hour filter (1 mas = 2.78x10” g) and
measured with single accelerometer in August 1998.
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The single accelerometer, in its various implementations, has demonstrated a
remarkable sensitivity and repeatability. The accelerometer was able to resolve a
modulated gravity signal (at 0.3 Hz) with a strength of less than 10® g in the presence of
seismic noise. Another single accelerometer is used to measure the Luni-Solar tides
(working as a tilt meter) in the Gran Sasso laboratory (Italy). Excellent tidal signal over
periods of months have been measured by the IFSI team. A month-long sample of a
Luni-Solar tide in August 1998 is shown in Figure 120 as an example of the performance
of the single accelerometer in the field.

Damping of transient oscillations

The differential accelerometer prototype was developed and built to test, among
others, key aspects of differential acceleration measurements as follows: (a) abatement of
the natural dynamics excited by the instrument release into the capsule; and (b) rejection
of the common-mode signals. Point (a) above is critical for the success of our
experimental scheme. For an instrument that is required to resolve acceleration of 10" g,
the release is an abrupt event that pushes the detector well beyond its saturation point.
Moreover, in a (flight) instrument with a Quality factor (Q) of order 10° and a resonance
frequency of a few Hz, the transient oscillations would take a very long time to decay to
within the instrument’s dynamic range. The strategy that we plan to follow in the
experiment is to reduce the Q factor during the first few seconds of fall from 10° down to
a few units. The reduction of the Q factor is accomplished by inserting a resistance in the
feedback control loops of the accelerometer (see Fig. 121). The technique has been
tested successfully on the prototype accelerometer.
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Figure 121 Electrical diagram of one test mass pickup system with resistance added to
the feedback loop

Figure 122 shows the oscillation amplitude (from the oscilloscope output) of the
accelerometer after an excitation. The accelerometer has a resonant frequency of 18.5 Hz
and an (undamped) Q, = 2900. The introduction of a 50 Mohm resistive load in the
feedback loop, reduces the Q from its undamped value to Q,” = 441 and, consequently,
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the oscillation amplitude decays much more rapidly. Subsequently, the resistance is
removed to demonstrate that this operation does not re-excite the oscillation amplitude.

A X6.7 Y ©.134048 Tine

+

0.134048

Magnitude

(Linear)

Figure 122 Oscillation amplitude decay vs. time with and without resistance inserted in
the feedback loop

It is worth reminding that the decay of the proof mass oscillations is driven by the
total quality factor of the electro-mechanical system which is as follows:

—_— (70)
Qt Qm Qe Qc 1+ (woRC)2

where A is the electro-mechanical coupling factor

CE?

A=—

2
maygy

that is the ratio of electrical energy to mechanical energy of the oscillator. The electro-
mechanical coupling factor of the instrument prototype is a low A = 0.01. The flight
instrument will have a value much closer to unity thanks to a lower value of w, and
higher value of the capacitance C. Consequently, an electrical resistance of the value
adopted for this test coupled into the feed-back loop of the flight instrument will imply a
reduction of the value of Q, to a few units. In summary, this damping technique is able to
provide the desired damping performance.
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Common-mode rejection factor

One important characteristic of a differential accelerometer is its ability to reject
perturbations that are not differential, i.c., common-mode disturbances. This ability is
quantified by the common-mode rejection factor (CMRF).

Figure 123 Experimental setup to perturb differential accelerometer with periodic
common-mode disturbances.
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The IFSI laboratory has built a rotating system whose rotation axis can be accurately
tilted off the vertical (see Fig. 123). The accelerometer is mounted inside the rotating
device with the sensitive axis orthogonal to the spin axis. The rotating outfit is tilted by
about 10~ rad away from the vertical and spun at a slow rotation with a frequency of 0.15
Hz. As the differential accelerometer slowly rotates, it measures a small component
(proportional to the tilt) of the Earth’s gravity field at the rotation frequency. This
perturbation is a common-mode disturbance which affects equally the two proof masses.
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Figure 124 Accelerometer outputs: (a) single acceleration from proof mass 1 and 2 and
(b) differential acceleration.

The differential output generated by the calibration signal is then treated by the
software through spectral analysis of the individual signals to adjust the proportionality
factors of the two sensing masses and the phase differences of their responses.
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Figure 125 Spectra of individual and differential acceleration outputs: (a) after
amplitude calibration only and (b) after amplitude and phase calibration.

Figure 125 shows that after calibrating for amplitude and phase a 10 attenuation is
readily obtained for the differential signal. This level of attenuation is effective not only
at the perturbation frequency of 0.15 Hz but also over a larger frequency band. An
attenuation of 10* or equivalently a common-mode rejection factor of 10 meets the
present requirement on the CMREF for the proposed tests of the Equivalence Principle.
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Concluding Remarks

The laboratory activity consisted in the construction of a laboratory prototype of a
differential accelerometer. The laboratory prototype has been used to conduct key tests
on the differential instrument. The team at IFSI demonstrated the ability of the detector
to damp quickly transient oscillations by utilizing a resistive load in the feedback loops
and then removing that load to reestablish a high quality factor of the detector. A rotating
device with tilt control was also built at IFSI. This device was utilized to impart (through
the Earth’s gravity) common-mode perturbations to the differential accelerometer. These
calibration disturbances have been used to trim the acceleration outputs of the individual
proof masses in order to obtain a common-mode rejection factor better than 10™ in a
sufficiently large frequency band centered at the spin frequency.
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